• 締切済み

背理法

ataokoroinonaの回答

回答No.16

x^3+x+1=0 が有理数の解を持つと仮定する  x=q/p (q,pは互いに素な整数) とおける 式に代入して整理すると  p^3=-q(p^2+q^2) ...(1) ここでqが素因数nを持つと仮定すると  q=an とおけ,  p^3=-an(p^2+q^2) よってp^3は素因数nを持つ nは素数なので,pも素因数nを持つ すると,pもqも素因数nを持つことになり,pとqが互いに素であることに矛盾する よってqは素因数を持たないので  q=±1 q=1のとき(1)に代入すると  p^3=-p^2-1  p=-1-1/p^2 pは整数なので,右辺の1/p^2が整数になるためにはp=±1でなければならないが,これは上の等式を成り立たせない q=-1の時も同様 よっていずれの場合も矛盾が生じるので,x^3+x+1=0は有理解を持たない  

関連するQ&A

  • 背理法

    例えば√2が無理数であることを証明する際に有理数であると仮定して矛盾を示しますが、その際に√2=q/pと置いたとして、このときに、『p、qは互いに素な整数』とするのはなぜでしょうか?

  • 背理法

    問題 背理法を用いて、次の命題が真であることを示す。 命題:”√3は無理数である” ここで、背理法による証明はP→q や qであるが真であることをいうためにはまず ̄q(qではない)と仮定して矛盾を示すのでこの問題では、 √3は有理数であることを仮定しますが、 ここで有理数ということなので、整数、分数と改定しますが、なぜ既約分数で表すのでしょうか? 有理数は整数でもよいので 例えば、3やー4でもよいのでは? そこのところを教えてください。 疑問です。

  • 背理法

    たとえば 「x=√2を満たす整数は偶数であることを証明せよ」 という問題があったとして 背理法ではx=√2を満たす整数が奇数であると仮定して、成り立たない示しますよね? すると証明できてしまいますが、もちろんxは整数ではありません。 参考書などの解答例を見ますと、こういう危険性を考慮してないような気がしてなりません。 30年近い疑問です。

  • 背理法を使わない証明

    2つの正の整数m,nについて、m^(1/n)が有理数ならばm^(1/n)は整数であることを証明せよ とりあえずn乗してm=p^n/q^nとなりました。 どなたか詳しく教えてください!

  • 高校レベルの数学の問題(方程式)教えてください!!

    整数a,bを係数とする2次方程式X^2+aX+b=0が有理数の解αをもつときαは整数であることを示せ。 問題集の解答 α=n/m(m,nは互いに素な整数、mは0でない) とおく。 「質問壱 α=n/mと置いたのは有理数の形にした。だけ?」 αはX^2+aX+b=0の解なので (n/m)^2+a(n/m)+b=0 n^2+amn+bm^2=0 mが±1でない ならば、mはある素因数Pを含む。 「質問弐 ±1の条件はm=±1ならαは整数になるから?でも整数も有理数なのだからそのままでもいいのでは?」 するとn^2=-m(an+bm)も素因数Pを含む。 n^2の素因数はnの素因数だから、Pはnの素因数となり、m,nは公約数Pをもつことになる。これはm,nが互いに素であるという仮定に反する。よってm=±1 α=±n(整数) 実を言うとこの解答はほとんどわかっていません。 1.α=n/mという有理数の形にしてみる。 2.実際に与式にn/mを代入したとき、n/mが約分して整数の形になってしまう。だからαが有理数の解ならαは必ず整数ってことが証明できる。っていうことをしているんでしょうか??  でも解答みるとなんか難しいことかいてるんで良くわからなくて?こんなに難しいことしないと駄目なんでしょうか??解答ってこれ背理法ってやつですか?あまり背理法理解してないもんで。これ背理法かどうかもわからない。

  • 数A背理法のもんだいについて

    【問題】 √6が無理数であることを、背理法を用いて証明せよ。 という問題の解答について質問です 【解答】 √6=b/a(a、bは整数)と表せると仮定すると、√6a=bより、両辺を2乗して、 6aa=bb・・・(1) ★aa,bbにふくまれる素数2の累乗の指数は、いずれも偶数であるから 6aa=2・3・aaに含まれる2の累乗の指数は奇数、bbに含まれる2の累乗の指数は偶数であり、素因数分解の一意性より6aa≠bbとなり、(1)に矛盾★ ゆえに、√6は無理数である ★ではさんだ部分がよくわかりません… あと、別解として √6が有理数だとすれば、√6=q/p(p,qは互いに素な自然数(整数?))と表せる。 これより、6pp=qq ☆左辺が2で割り切れるので右辺も2で割り切れなければならず、qは2で割り切れる。 よって、右辺が4で割り切れるので左辺も4で割り切れなければならず、qも4で割り切れる。☆ これは、p、qが互いに素であることに矛盾する。 ゆえに、(背理法により、)√6は無理数である も可能でしょうか? でも☆の部分で、「左辺に6ってあるから2じゃなくて3で割り切れるので~」という風にもなる…?とか考え出したらよくわからなくなっちゃって… ★の部分と☆の部分についてお願いします(> <)

  • 背理法についての質問です

    p√2が無理数であることを背理法を用いて証明せよ。 という問題です。 √2が無理数であるという証明は、下のようにわかるのですが p√2が無理数であるという証明は同じように解けるのでしょうか? √2が有理数であると仮定し,これをn/mとおく. (ここに,m,nは整数で互いに素) 両辺を2乗すると 2=(n/m)^2 2m^2=n^2 よって,nは2の倍数・・・(1) n=2kとおく 2m^2=4k^2 m^2=2k^2 よって,mは2の倍数・・・(2) (1)(2)はm,nが互いに素という仮定に反し,矛盾. ゆえに,√2は無理数

  • 背理法

    x,y,zを自然数とし、P=(x^2)+(y^2)+(z^2)とする。 このときx,y,z,pがすべて素数ならば、x,y,zのうち少なくとも1つは3の倍数を証明する問題で 背理法を用いて、すべてが3でないとき x≠3,y≠3,z≠3、P≠3 と仮定して このとき、x,y,zがすべて素数であることから、x,y,z,pはいずれも3の倍数ではない。 この後どのように考えるのか分かりません。

  • 背理法と命題の否定について

    背理法と命題の否定について 例えばp⇒qを背理法を用いて証明するとき、p⇒qの否定を仮定すると、すなわち、pであってqでないものが存在すると仮定すると矛盾が生じるから、(否定が偽ならもとの命題は真であるから、)p⇒qである。ということなんですよね? では、「nが自然数のとき、n(n+2)が8の倍数ならばnは偶数である」を背理法を用いて証明するとき、冒頭の文は、「nが自然数、n(n+2)が8の倍数であり、奇数であるnが存在すると仮定する。」というのでいいんですよね? 普通参考書などではもっと簡潔に「nが奇数であると仮定する。」などと書いてあるのは、わざわざ長々と書かなくてもわかるからということなのでしょうか? しかしこの書き方だと、「全てのnが奇数であると仮定する」と言っているようにも取れるように思うのですが… p⇒qの否定は決して「p⇒qの余事象」ではないですよね? 自分の解釈に自信がもてなくて… 間違っているところがありましたら、ご指摘お願いします。

  • 数学の因数定理について

    数学の因数定理について 整式P(x)がx=aで0になる条件はP(x)がx-aを因数に持つこと(因数定理)を証明せよ。 と言う問題があります。 解答と異なっているので確認お願い致します。 P(x)がx-aで割り切れるとする。P(x)をx-aで割った商をQ(x)とすると、 P(x)=(x-a)Q(x) が成立する。 よってx=aをこの式へ代入すると P(x)=(a-a)Q(a) P(x)=0 最初のP(x)がx-aで割り切れるとする… というところで証明すべきP(x)が(x-a)を因数に持つということを使ってしまっているような気がするのですがやっぱり間違ってますか? ちなみに解答では その前の問題で 整式P(x)を一次式x-aで割ったときの余りをRとすればR=P(a)となることを示せ と言うことを証明したので、 これを使って次のようになってます。 P(x)がx=aで0になる、つまりP(a)=0ならば前の問題よりR=0となる。 したがって P(x)=(x-a)Q(x) つまりP(x)はx-aを因数に持つ。つまりある正式Q1(x)を用いて P(x)=(x-a)Q1(x) と表されるならば、この式のxにaを代入して、 P(a)=(a-a)Q1(a) つまり P(a)=0