- 締切済み
n次導関数!!
問題はy=e^x/(1-x)のn次導関数を求めよっていう問題です。ライプニッツの公式を使って、求めていったんですけど、最終的にうまく式をまとめられなくなりました。できたところまで書くので、教えてください。 f(x)=e^xで、g(x)=1/(1-x)とする。 ライプニッツの公式を使って、(f(x)g(x))^(n)=(n、0)f^(n)(x)g^(0)(x)+(n、0)f^(n-1)(x)g^(1)(x)+…+(n,n)f^(0)(x)g^(n)(x) =e^x(1/(1-x)^2)+ne^x(2/(1-x)^3)+…+e^x(n!/(1-x)^(n+1)) =e^x(n!/(1-x)^(n+1))…??って感じです。階乗のところのまとめ方がよくわかりません。答えは、e^x((1-x)^(-n-1)n!)(Σ(k=0.n)1/k!(1-x)^k)です。 わかりにくいと思いますが、力になってください!!
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- age_momo
- ベストアンサー率52% (327/622)
回答No.1
途中で式が間違っています。初項は(n、0)f^(n)(x)g^(0)(x) g(x)は元の関数です。 e^x/(1-x) となるはずです。(つまりe^xだけをn回微分) また、Combineの計算はC[m,n]=m!/n!(m-n)!ですから Σ[k=0,n]C[n,k]=n!/0!n!+n!/1!(n-1)!+・・・=n!Σ[k=0,n]1/k!(n-k)! となります。これを踏まえればまとめられます。 ところで答えは e^x((1-x)^(-n-1)n!)(Σ(k=0,n)1/k!(n-k)!(1-x)^k) ではないですか?