• ベストアンサー
  • 困ってます

量子力学的角運動量から量子数を導きたいのです

気になって今朝から考えて調べているのですが どうも分かりません。 物理学辞典(培風館)で量子数について調べていると、 方位量子数と項目で次の内容の記述がありました。 軌道角運動量Lの固有値を以下の式で書いたときの非負の整数lをいう。 L = (h / 2pi) sqrt{l(l + 1)} なぜ軌道角運動量の固有値が以下になるのか 実際に計算してみようと思い、軌道角運動量 を同辞典で調べ、位置ベクトル(x,y,z)、 運動量p= - j (h / 2pi) nablaとする場合の 軌道角運動量(ベクトル)が以下のようになりました。 | i j k | L = -im * det | x y z | | d/dx d/dy d/dz | ここで im は虚数、h はプランク定数、 piは円周率、i,j,kはデカルト座標の基底ベクトル、 nablaは(di/dx + dj/dy + dk/dz)、 d/dx は x での偏微分、det は行列式を表しています。 線形代数では行列を用いて固有値lambdaを求めたことが あります。しかし軌道角運動量Lはベクトルです。 Wikipediaで調べると、固有関数が球面調和関数で、 そこから固有値が求まるように説明されていました。 途中の量子力学(交換関係)と球座標系への座標変換、 球面調和関数が分からず、悪戦苦闘しております。 どなたかご教授願えませんでしょうか? 参考文献やWebページも教えて下さると 大変助かります。

noname#18852
noname#18852

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数457
  • ありがとう数5

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

>気になって今朝から考えて調べているのですが どうも分かりません。 >途中の量子力学(交換関係)と球座標系への座標変換、 球面調和関数が分からず、悪戦苦闘しております。 少し自助努力が必要ですが(汗;)、参考URLをご覧になられてはいかがでしょうか。 蛇足ながら・・・・例えば位置座標xと運動量演算子Px(=-ihbar∂/∂x)の交換関係[x,Px]を具体的に計算する場合、常にある被作用関数Φ(x)がかかる事に注意してください(←ついうっかり忘れそうになりますが、『演算子』ですからその役目を果たさなくては、、、)。このあたりの事情は次のURLを参照してみてください。 http://www12.plala.or.jp/ksp/quantum/commutation/

参考URL:
http://www.math.ryukoku.ac.jp/~sadakane/2004/qm/qm12.pdf

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 参考URLから交換関係と球座標系への座標変換が 少しわかってきました。 でも球面調和関数の複雑さには抵抗ありますね。

関連するQ&A

  • 量子力学に関する質問です

    水素原子における電子の波動関数と 球面調和関数の関連は何でしょうか。 ご回答よろしくお願い致します。

  • 角運動量の量子力学的性質についての計算

    角運動量の量子力学的性質についての計算 直接物理と関係があるわけではないのですが、量子力学の教科書に載っていたもので…。 L(x)=-ihbar[yd/dz-zd/dy] L(y)=-ihbar[zd/dx-xd/dz] L(z)=-ihbar[xd/dy-yd/dz] を極座標に直す計算過程で、どうも自分でやると結果が教科書と合わず困ってます。計算過程について詳しく教えていただけると助かります。

  • 量子力学(角運動量の固有状態について)の問題

    こんにちわ。 量子力学の問題で分からなかったところがあるので質問させてください。 最初に問題を載せておきます。 問題 今考えているp状態の固有関数が, ψ=f(r)cosθ=f'(r)rcosθ=f'(r)z と表せるとすると,この関数がLzの固有状態にはなっているが,Lx及びLyの固有状態にはなっていないことを示せ。但し,Lx,Ly,Lzは以下のようにあらわせるとする。 Lx=yp_z-zp_y=-ih(y*d/dz-z*d/dy) Lx=zp_x-xp_z=-ih(z*d/dx-x*d/dz) Lz=xp_y-yp_x=-ih(x*d/dy-y*d/dx) ※p_x,p_y,p_xは運動量pのx,y,z成分,微分(d/dxなど)は本当は偏微分です。見づらくてすみません という問題です。 固有状態になっていることを示すのだから,Lzにψ=f'(r)zを代入して求めればよさそうに思ったのですが,固有関数の具体的な関数が分かっていないし,どうしていいのかわかりません。ちなみに球座標に変換しなくても解けるみたいなことを言われました。 考え方だけでも教えていただけると嬉しいです。よろしくお願いします。

その他の回答 (1)

  • 回答No.1

図書館へ行く時間があるならば、そうした方が良いとおもいます。量子力学のテキストではどんなものでも角運動量の議論が、多かれ少なかれあると思います。 シッフの量子力学 メシアの量子力学 ランダウ・リフシッツの量子力学 JJサクライの量子力学 ファインマン レクチャーシリーズの量子力学 などが標準的でしょう。他にも砂川重信の量子力学 ・・・数え切れないくらいのテキストが出版されています。社会人で図書館へ行く時間がなかなか取れない場合には、googleで 「角運動量 量子力学」や 「角運動量演算子」「球面調和関数」で検索してみてください。数え切れないくらいのサイトが出てきます。内容事態は量子力学を勉強したことのある人にとっては基本的なのですが、角運動量の全体を分りやすく説明するのはこの掲示板ではなかなか大変です。それでもこの掲示板で議論をしたいなら、質問をもっと具体的に、そしてポイントを絞ると良いと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

>質問をもっと具体的に、そしてポイントを絞ると良いと思います。 そうですね。すいません。 挙げて下さった参考文献を参考にします。 ありがとうございます。

関連するQ&A

  • 量子力学の問題で困っています

    量子力学の問題なのですが手元に資料が少なく、またネットで調べてもよくわからないので誰か教えて下さい。 1次元の調和振動子の規定状態の波動関数は一座表表示で次のように書ける Ψ(x,t) = Aexp(-2mωx^2/2h)exp(-iωt/2) これが調和振動子のシュレディンガー方程式の解であることを確かめなさい という問題なのですが調和振動子のシュレディンガー方程式というのは (-h^2/2m)d^2Ψ/dx^2 + mω^2x^2Ψ/2 = EΨ でいいのでしょうか? この方程式では時間の項を考慮していないように見えるのですが また、運動量の固有関数が f(x) = (1/√2πh)exp(ipx/h) であることを用いて、この波動関数Ψ(x,t)の運動量表示Φ(p,t)を求めなさい という問題も計算がうまくいかなくて困っています。教えていただけませんか? 式中のhは全てエイチバーです。よろしくお願いします

  • 球面調和関数

    量子力学の問題で、球面調和関数が出てきますが球面調和関数とは「球面上の直行関数系で、1次元下げると単位円上の三角関数系になる」らしいのですがよく意味がわかりません。誰かわかる方がいらしたら解説をよろしくお願いします。

  • 【量子力学】エルミート共役と複素共役など

    量子力学が相変わらず難しすぎて、どこがわからないのかわからないという状況なのですが、 少し糸口になりそうな部分がわかったような気がするので質問させて頂きます。 複素共役を考えると、ブラケットでは、例えば  (1) (<ψ|A|φ>)^* = <φ|A^†|ψ> となり、同じものを波動関数の式では  (2) {∫ψ^*Aφdx}^* = ∫φ^*Aψdx (全空間で積分ということでdxとしています) のように書かれると思うのですが、エルミート共役はどのようになるのでしょうか?  (3) (<ψ|A|φ>)^† = ?  (4) {∫ψ^*Aφdx}^† = ? という意味です。 私が今思っていることとしては、「内積をとった(ブラケットが閉じた)もの全体に対するエルミート共役」 という概念を考えること自体がおかしいのではないか、などと考えているのですが…。また逆に、  (5) {A|ψ>}^† = <ψ|A^†  (6) {A|ψ>}^* = ? という疑問や、更にこれを波動関数の式((2)みたいな式のことです。何と呼ぶのかわからない…。)で書くとどうなるのか、 などなど、もう何も分かってない気がしてきます(^^;; とりあえず質問は上記の通りなのですが、(2)のような表記の意味がどうにもよくわからっていないというのが正直なトコロです。。 ブラケットなどの行列力学のような書き方は比較的しっくり来るのですが…。 波動関数というもの自体が、「関数だからベクトルじゃないの??」とか、 「順序とか関係なく、[ψ,φ]=0でいいの??」とか…。もうなんだか混乱しすぎ…orz という感じなので、どうかお救い下さい。 恐らく質問文が既にいろいろ間違ってたりするのでしょうが、何とか汲み取ってご教授くだされば幸いです。 いろいろ質問が多くなってしまいましたが、よろしくお願い致します。

  • 球面調和関数

    球面調和関数について、どのような関数か知っている方、 またこのことについて詳しく説明がしてあるサイトを知っている方、よろしくお願いします。 変換関数として良く使われているわりには、よくわからないんです(^^;)

  • 球面調和関数の発見

    球面調和関数はどうやって発見されたのでしょうか。 というより、どうやってラプラシアンの角度成分の解を求めたのでしょうか。

  • 軌道角運動量の性質

    軌道角運動量の性質で 演算子表記されたLの成分が Lx=-i(y・d/dz-z・d/dy) Ly=-i(z・d/dx-x・d/dz) Lz=-i(x・d/dy-y・d/dx) の時に、p軌道の成分が Px=f(r)x Py=f(r)y Pz=f(r)z でf(r)はrのみの関数である時に、Lx等を作用させると LxPx=0 LxPy=ⅰPz LxPz=-iPy と簡単にもとまるとあるのですが これはどのように導出されるのでしょうか?

  • 非対称なポテンシャル中での固有状態

    量子力学の話です。 3次元の球対称なポテンシャルlの場合にはシュレディンガー方程式を極座標表示して、 球面調和関数Yが角運動量の2乗L^2と角運動量のz成分Lzの固有関数であることが求められます。 では、ポテンシャルが球対称じゃない場合、例えばV(x,y,z)=m/2[ω1x^2+ω2y^2+ω3z^2)]のようなポテンシャルを持ったの調和振動子などの場合に、上の場合と同じように調和振動子の定常状態はL^2とLzの固有状態になれるのでしょうか? なれないのならばその理由を教えてください。 よろしくお願いします。

  • ラグランジュの未定乗数法

    条件g(x,y)=0の下で、z=f(x,y)の極値を求める。 g(x,y)=0は、xとyの陰関数でありz軸に平行なある曲面を表す。 z=f(x,y)の全微分は、dz=(∂f/∂x)*dx+(∂f/∂y)*dyより、(dz/dx)=(∂f/∂x)*1+(∂f/∂y)*(dy/dx) dz/dx=f_x(x,y)+f_y(x,y)*(dy/dx) ここでzは、g(x,y)=0の条件によりxの1変数関数となっている。 一方、z=g(x,y)とすると、z=g(x,y)=0となり、これは恒等的に0である。よって、全微分もdz=(g_x)*dx+(g_y)*dy=0となる。 dy/dx=-g_x(x,y)/g_y(x,y) dz/dx=f_x(x,y)-[{f_y(x,y)*g_x(x,y)}/g_y(x,y)] (x,y)=(a,b)の点で、この曲線が極値をもつとき、dz/dx=0となる。 dz/dx=f_x(a,b)-[{f_y(a,b)*g_x(a,b)}/g_y(a,b)] f_x(a,b)={f_y(a,b)*g_x(a,b)}/g_y(a,b) g_x(a,b)≠0のとき、両辺をg_x(a,b)で割り、{f_x(a,b)/g_x(a,b)}={f_y(a,b)/g_y(a,b)} ここで、{f_x(a,b)/g_x(a,b)}={f_y(a,b)/g_y(a,b)} =λとおくと、f_x(a,b)=λ*{g_x(a,b)}, f_y(a,b)=λ*g_y(a,b) このλが未定乗数である。 質問がいくつかあります。 まず、初めに条件になっている『g(x,y)=0はz軸に平行な曲面を表す』とあります。これは、z=g(x,y)=0とは違いますよね? z=g(x,y)=0はz=0なので、xy平面上の関数になり、z軸に平行な曲面にはならないと思うのですが。 次に、全微分可能な関数z=f(x,y)の全微分はdz=f_x(x,y)dx+f_y(x,y)dyと表され、これは∂z/∂x=f_x(x,y)+f_y(x,y*)(dy/dx)と表す事ができ、この左辺はzがxとyの2変数関数のためdz/dxとならずに∂z/∂xとなっています。この証明においてz=f(x,y)の全微分を求める際に『ここで、zはg(x,y)=0の条件により、xの1変数関数となっている』とありますが、これはどういう意味でですか? z=f(x,y)の曲面とg(x,y)=0の曲面が交わった所は曲線になるのは分かります。そしてこの曲線はxの値を一個定めると、それによってyの値が決まるので、zも決まる。よってzはxの1変数関数となるのでしょうか? そして、『z=g(x,y)とおくと、z=g(x,y)=0とおくと、これは恒等的に0。よって、その全微分もdz=(g_x)*dx+(g_y)*dy=0』とありますが、まずこの意味を簡単に説明していただけますか。『よって』の前後がどう繋がっているのが分かりません。『z=g(x,y)=0とおく』となっていますが、この場合z=g(x,y)=0は前述したようにxy平面上のグラフになると思うのですが、なぜg(x,y)=0をz=g(x,y)=0と置き換えたのかが分かりません。dy/dxの値を求めるためでしょうか? 自分の書いた所に、誤解やちんぷんかんぷんで意味が分からない所があれば指摘してください。

  • 波動関数の動径関数について

    現在、分子軌道法について勉強しているのですが、波動関数の動径波動関数について調べても理解できない点があったので、どなたかご存知でしたら、ご教授頂ければと思います。 質問1)  動径関数は、クーロン場に由来する関数であるため、原子核からの距離rの関数として表されますが、なぜ1sは動径関数の値は正のみをとり、2sからは負の値も取り得ることが可能なのでしょうか?  動径関数は、空間的な電子の広がりを支配しているため、負の値の意味がよくわかりません。  よろしくお願いします。 質問2)  波動関数は動径関数と球面調和関数の積で表されますが、球面調和関数の位相因子はどのような意味をもつのでしょうか?  動径波動関数で、空間的な電子の広がりを表現するために、正負の値を取り得るのなら、なぜ球面調和関数が必要なのでしょうか?  よろしくお願いします。 以上ですが、自分の勉強不足という点もあり、なかなか理解できず、困惑しております。ご教授よろしくお願い致します。

  • 完全形でない3変数関数の微分方程式の解法

    全微分方程式A(x,y,z)dx+B(x,y,z)dy+C(x,y,z)dz=0がある。この式をPとおく。ここで、ベクトル値関数f=[A,B,C]とおき、f・(rotf)=0となるならばPは積分可能でその一般解は下記の手順により求まる。 手順1:Pについてdz=0とすると、Adx+Bdy=0となる。この式をQとおく。これが(∂A/∂y)=(∂B/∂x)を満たすとき、また満たさないときは積分因子μをかけることによりこのQの一般解ξ(x,y,z)=E (Eは定数)が得られる。 手順2:Pの両辺にλをかけたものの一般解を求める。するとλAdx=(∂ξ/∂x)となる。これから、λの値を求める。 手順3:ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzとなり、このうち(∂ξ/∂x)dx+(∂ξ/∂y)dyはλAdx+λBdyとなるが、最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。 dξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzと(∂ξ/∂x)dx+(∂ξ/∂y)dy=λAdx+λBdyより、λAdx+λBdy=dξ-(∂ξ/∂z)dzとなる。 するとPの両辺にλをかけた式は、λAdx+λBdy+λCdz=dξ+{λC-(∂ξ/∂z)}dz=0となる。 ここで、λC-(∂ξ/∂z)=ηとおくと、λAdx+λBdy+λCdz=dξ+ηdz=0となり、2変数の全微分方程式dξ+ηdz=0が得られる。この解が結局全微分方程式Pの一般解となる。 ここで質問です。 手順1でdz=0とした式Adx+Bdy=0 (∂A/∂y)=(∂B/∂x)、またはμAdx+μBdy=0 (∂μA/∂y)=(∂μB/∂x)を解くとこの一般解、ξ(x,y,z)=Eが得られ、この関数ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=Adx+Bdy=0、またはdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=μAdx+μBdy=0になるのが分かります。 手順2,3でλAdx+λBdy+λCdz=0という式が出てきますが、これはλをかける事により完全形になっていると思われます。しかしなぜλAdx=(∂ξ/∂x)となるのかが分かりません。ξはAdx+Bdy=0の解として現れる関数なので、λAdx+λBdy+λCdz=0を満たす関数は別にあり、例えばこれをσとすると、この関数の全微分はdσ=(∂σ/∂x)dx+(∂σ/∂y)dy+(∂σ/∂z)dz=λAdx+λBdy+λCdz=0となり、λAdx=(∂σ/∂x)dxとなるのではないのでしょうか? それともこの関数σがξと一致すると仮定しているのでしょうか? それからもう1つ気になるのですが、手順3で「最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。」とありますが、これもよく意味が分かりません。なぜ(∂ξ/∂z)dzだけλRdzとはなるか分からないのでしょうか? おそらく私が根本的に間違っていると思いますので、詳しい方教えてください。お願いします。