• ベストアンサー

等電位線の単元の問題なのですが・・・

アルミホイルで等電位線をみつける実験をしました。 それについてる設問なのですが、教えてください! アルミ箔上の点(x,y)における電位がV(x,y)であるとする。このとき位置(x,y)上にある電子に働く電気力はどのような式で与えられるか。 という問題なのですが、 V=qV (V=Edより) =qEd を先生はヒントとしてくれたのですが、何がなんだかさっぱりです。 ほかの設問は先生に聞いたりしてどうにか頑張ったのですが、これは出来ませんでした・・・。(時間切れ) よければ教えてください!

質問者が選んだベストアンサー

  • ベストアンサー
  • chiezo2005
  • ベストアンサー率41% (634/1537)
回答No.1

Fx=e*dV/dx Fy=e*dV/dy ではないですか。 ちなみにdV/dx,dV/dyはX,Y方向の電位勾配=電界です。eは電子の素電荷(マイナスです)

natumi_tuda
質問者

お礼

どうもありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 電磁気(電気影像)の問題について

    電磁気の問題について質問させていただきます。 [問題] 図に示すように、(x,y,z)直角座標系のy=0平面状に接地された無限の導体平板、 そしてy軸上の原点からdの位置に+Qの点電荷が置かれている。誘電率をε0として次の問いに答えよ。 (1) y>0を満たす任意の点P(x,y,z)における電位を求めよ。 (2) y<0を満たす任意の点P(x,y,z)における電位を求めよ。 設問(1)に答えは V = (Q/4πε0) * ( 1/√(X^2+(y-d)^2+z^2) - 1/√(X^2+(y+d)^2+z^2)) になると思うのですが、 設問(2)も V = (Q/4πε0) * ( 1/√(X^2+(y-d)^2+z^2) - 1/√(X^2+(y+d)^2+z^2)) でいいのでしょうか?(1)と答えの形は変わらないと思うのですが、 あっているか不安なので質問させていただきました。 y<0では平板下側に+Qが現れると思うのですが、この考え方は正しいでしょうか? 回答宜しくお願い致します。

  • 微分方程式の問題。

    xtan^2(y/x)+y=xy' の解を求めるのですが。 tan^2(y/x)+(y/x)=y' ここで、v=y/x と置くと、y=vx ⇒ y'=v'x+v ∴tan^2(v)+v=v'x+v tan^2(v)=v'x tan^2(v)=x(dv/dx) dx/x=dv/tan^2(v) ∫dx/x=∫dv/tan^2(v) + C (C:積分定数) =∫(cos(v)/sin(v))^2dv +C ココ以降のやり方がわかりません。。。。 もしかして、ココまででもう既に違いますかね・・・? もう1問質問があったのですが、自力で解けてしまったので、この問題をお願いします。 くだらない質問でスイマセン、、

  • 微積の問題です。

    どなたか以下の問題の答えを教えてください。 (1)スカラー場f(x,y)、ベクトル場V(x,y)に対して、∇・(fV)=(∇f)・V+f∇・Vを示せ (2)V=(2x+y,-x-3y),Cは(0,0)(1,0)(1,1)を順に結ぶ折れ線である。このとき、曲線C上で、微積分∮c V・dr を求めよ

  • 積分で体積を求める問題について。

    この問題なんでしょう? 自分ではもれなく解いてるつもりなんですが・・・ ====問題 y=4-x^2とy=-3xで囲まれた部分をx軸のまわりに回転させて 得られる体積は? ===== という体積の問題です。グラフをまず書いたのですが(交点は-1と4)これを いっぺんに求めるのは無理なので基本的に3つにわけました。 y軸の左側にある部分をV1として解いたんです。答えは158π/15でした。 次にy=4-x^2とy軸とx軸に囲まれた部分をV2として解きました。これは256π/15でした。 問題は次で、y=4-x^2をx軸で折り返してy=x^2-4を書きます。 それでこのy=4-x^2とy=x^2-4とy=-3xに囲まれた部分をV3としました。 ここを求めるためにまず V'=π∫[0,4] (-3x)^2 dx=192πを求めました。 この体積から余計な部分を引いていくことにしました。 y=x^2-4とy=-3xとx軸の部分はV2のときに求めた部分に入るので 192πからひくことにしました。 V''=π∫[0,1] (-3x)^2 dx+π∫[1,2] (x^2-4)^2 dx=98π/15 さらにx=4とy=4-x^2とx軸で囲まれた部分も余計なので V'''=π∫[2,4] (x^2-4)^2 dx=1984π/15  なので V3=V'-(V''+V''')であるのでV3=798π/15  したがって V1+V2+V3=1212π/15になりました。 しかし、答えは132πなんです。 どこがおかしいんでしょうか。

  • 電位分布の問題です

    無限に広がる平面に電荷が一様に分布している。この時の電位分布を求めよ(単位面積あたりの電荷はω)という問題です。 まずガウスの法則を利用して、電場E=ω/2ε0を求めました。 その後にV=∫Edrを使って、V=(ω/2ε0)rとなりました。 そこでy軸にV、x軸にrをとり電位分布のグラフを書くと比例にグラフになりました。 そうするとrが大きくなればなるほどVも増えていくのですが、これで合っているのでしょうか 平面から離れれば離れるほどVが大きくなるというところが納得できません もしくは私の解答が間違っているのでしょうか 解説をお願いしたいです

  • 複素関数の証明問題です

    f(z)がzの解析関数(正則関数)であるとき (∂^2/∂x^2 + ∂^2/∂y^2)|f(z)|^2 = 4|f'(z)|^2 を証明する問題なのですが f(z)=u(x,y)+iv(x,y)とおいて、左辺を計算すると、 (∂^2/∂x^2 + ∂^2/∂y^2)(u^2+2uvi-v^2) =(∂/∂x)(∂u^2/∂x)+(∂/∂x)(∂2uvi/∂x)-(∂/∂x)(∂v^2/∂x) +(∂/∂y)(∂u^2/∂y)+(∂/∂y)(∂2uvi/∂y)-(∂/∂y)(∂v^2/∂y) =(∂/∂x)(2u(∂u/∂x))+(∂/∂x)(2vi(∂u/∂x))-(∂/∂x)(2v(∂v/∂x)) +(∂/∂y)(2u(∂u/∂y))+(∂/∂y)(2vi(∂u/∂y))-(∂/∂y)(2v(∂v/∂y)) コーシー・リーマンの関係式を用いて、 =2(∂u/∂x)(∂v/∂y)+2i(∂v/∂x)(∂v/∂y)+2(∂v/∂x)(∂u/∂y) -2(∂u/∂y)(∂v/∂x)-2i(∂v/∂y)(∂v/∂x)-2(∂v/∂y)(∂u/∂x) =0 となりました。 最後のところで 2(∂u/∂x)(∂v/∂y)+2i(∂v/∂x)(∂v/∂y)-2(∂v/∂x)(∂u/∂y) -2(∂u/∂y)(∂v/∂x)-2i(∂v/∂y)(∂v/∂x)+2(∂v/∂y)(∂u/∂x) となれば 4{(∂u/∂x)(∂v/∂y)-(∂v/∂x)(∂u/∂y)} =4{(∂u/∂x)^2+(∂v/∂x)^2} =4|f'(z)|^2 となり、証明できるのですが、途中どこが間違っているかが分かりません 長文となりましたが、分かる方よろしくお願いします。

  • 軌跡の問題で

    軌跡を求める問題で 点P(x、y)が原点を中心とする 半径1の円周上を動くとき、 点R(x(x+y)/2、y(x+y)/2)は どんな図形上を動くか という問題で 私は まず円の式はx^2+y^2=1で R(u、v)とおいて 円の式とu=x(x+y)/2、v=y(x+y)/2から 2(u+v)=x^2+y^2+2xy 2xy=2(u+v)-1・・・(1) それとは別に 2x^2=1+2(u-v)・・・(2) 2y^2=1+2(v-u)・・・(3) が分かり (2)×(3)=(1)^2から・・・・(4) uとvの関係が分かり Rの軌跡は円 2(x^2+y^2)-(x+y)=0 と言うことがわかりました しかし、答えを見ると (1)(2)(3)(4)から逆に このようなu、vについては -1≦2(u+v)≦1 となるから、(1)(2)(3)を満たすx、yの実数値が 存在する。 の一文が追加されています、この意味とどのような 求め方でこの不等式が出てきたのわかりません どなたかわかる方教えて頂けないでしょうか

  • わからない問題があります

    ∬∫[v]x^3y^2zdxdydz V:x^2+y^2+z^2<=1,x,y,z>=0 x=rsinθcosφ y=rsinθsinφ z=rcosθ とおいたまでは良さそうなんですが・・・ ちなみに私の答えは5π^2/1536・・・う~ん。

  • 重積分の問題です。添削をお願いします。

    ∫∫D(x+y)e^(x-y)dxdy   D: 0 ≦x+y≦2, 0 ≦x-y≦2 を求める。   u = x+y,v = x-y   D': 0 ≦u≦2,  0 ≦v≦2   x = (1/2)(u+v), y = (1/2)(u-v)   2 2 (1/2)∫ ∫u・e^vdudv   0 0      2 2   = (1/2)∫e^v∫ududv      0 0      2    2   = (1/2)∫e^v[u^2/2]dv      0    0     2    = ∫e^vdv = e^2 - 1     0  wolframaで (1/2)∫(0~2)∫(0~2)u*exp(v)dudv と入力しましたが解答が合いません。どこがおかしいのでしょうか?

  • 次の問題の答えを教えてください。

    複素数で書かれる関数w=logzを考える。ここでz=x+iy,w=u+ivとする。(u,v)を(x,y)の関数であらわした式を書け。 (1)u=logx,v=logy (2)u=logy/x,v=log(x^2+y^2) (3)u=tan^(-1)y/x,v=log√(x^2+y^2)  (4)u=log√(x^2+y^2),v=tan^(-1)y/x よろしくお願いします。