• ベストアンサー

記憶項を伴う波動方程式とは ?

両端を固定した弦の微小振動を表す波動方程式 u_tt(t,x) = c^2u_xx(t,x) (c は波の伝播速度) に記憶効果を考慮すると右辺に\int_0^t a(t-s)u_xx(s,x)dsのような積分項が加わるらしいのですが, そもそも, 弦の振動の記憶効果とはどのような物理現象なのでしょうか? (過去の影響を表すようだが...) またそれを数式で表現したものが積分項になる理由を教えてください. このようなことが書かれている文献(和・洋を問わず) でも構いません.

質問者が選んだベストアンサー

  • ベストアンサー
  • chukanshi
  • ベストアンサー率43% (186/425)
回答No.1

「記憶効果」というのは、物理現象によく現れるもので、弦に限ったものではありません。物理では、ミクロでもマクロでも「運動方程式」は時間に関して可逆でありますが、現実、マクロで不可逆の現象は一般に存在するわけです。つまり、時間の方向がわかるわけで、それは、過去の効果が残っていることが一因です。これを「記憶効果」といいます。 一般に、このような効果を表すには、運動方程式に摩擦の項を導入します。 例えば、一般の緩和現象では、着目する物理量Aに対して、その時間変化は、 dA/dt=iωA-γA (1) と書けます。右辺2項目が摩擦の項です。この解は、 A=A(0)exp(iωt-γt) となり減衰関数になります。 でもこれでは、時間的には瞬間の効果しか入っていません。 記憶効果をとり入れるためには、これを拡張し、 dA/dt=iωA-\int(from0tot)M(s)A(t-s)ds (2) とします。ここでM(s)は記憶関数とよばれ、Aの「過去」が現在のAの変化率にどれくらい利いているかをあらわす関数です。つまり第二項が記憶項で、摩擦の拡張になっています。 例えば、過去が利かない(記憶がない)ときには、 M(s)=2γδ(s) とデルタ関数になって、これを(2)に代入すると、(1)の式になります。 つまり、過去の記憶をとりいれればならないときには、このように、積分項を導入しなければなりません。 (ということは、感覚的に上記例でわかっていただけると思います。) 弦の場合も同じです。 つまり、弦の運動の不可逆性を、単にその瞬間の摩擦(エネルギー散逸)だけではなく、過去の効果もとり入れる場合には、積分項が必要です。 弦の記憶効果も、広い意味で、弦の「摩擦」(エネルギー散逸)ととらえればよいでしょう。 このような「記憶効果」の一般論は、非平衡や不可逆の物理(力学、熱力学、統計力学など)の教科書には必ず載っているはずです。

memoryterm
質問者

お礼

ご回答ありがとうございました (返事が遅くなり申し訳ありませんでした). おかげさまで, おおよそのことはわかりました. お答えに便乗してもう少し質問させて下さい. 回答にある記憶関数 M(t) としては具体的にどのような関数を考えるのが自然なのでしょうか ? たとえば, t=0 で M(t) がsingular (M(0)=\infty になる) だが t \to \infty で 0 に減衰する関数と, t=0 も込めて微分可能な関数では, 物理現象としてはどのような違いがでてくるのでしょうか ? それから, ご指摘の非平衡や不可逆の物理の教科書をいくつか調べてみましたが, 「記憶効果」とはっきりと書かれた教科書を見出すことができませんでした. 具体的に文献を教えていただければ幸いです.

その他の回答 (3)

  • chukanshi
  • ベストアンサー率43% (186/425)
回答No.4

まだ、締め切りではない様なので、 記憶効果や記憶項に関する 記述がある教科書を、ご紹介します。 非平衡系の統計力学 物理学教科書シリーズ 藤坂 博一 著 (1998/01/01) 産業図書

memoryterm
質問者

お礼

chukanshi さん, ご回答頂きありがとうございました. ご紹介の文献はすべて取り寄せて調べてみることにします. とりあえず弦の振動についてだけわかればと思っていたのですが, 意外に日本語の文献はないようですね. お礼の返事が遅くなりまして申し訳ありませんでした.

  • chukanshi
  • ベストアンサー率43% (186/425)
回答No.3

>回答にある記憶関数 M(t) としては具体的にどのような関数を考えるのが自然な >のでしょうか ? >「記憶効果」とはっきりと書かれた教科書を見出すことができませんでした. 具体>的に文献を教えていただければ幸いです. 申し訳ありません。確かに、「記憶効果」について具体的に書かれている本は、 なかなかありませんでした。 その中でも、良い文献をあげておきます。 鈴木増雄著「統計力学」岩波書店 「記憶関数」が、他の物理量からどのようにして導出されるのか記述がある。 索引で「記憶関数」を調べてください。 久保亮五他著「統計物理学」岩波書店 「記憶項」についての、形式的で一般的な理論が展開されている。 索引で「記憶項」を調べてください。 以上の文献等を読んでいたら、自分でもよくわからないところがいっぱい出てきて、すっかり自信をなくしてしまいました。 まとめを書こうと思いましたが、申し訳ありませんが、駄目です。 お許し下さい。 以上で、私からのコメントは終了です。 大変失礼しました。

  • chukanshi
  • ベストアンサー率43% (186/425)
回答No.2

記憶効果について詳しい文献は、洋書で 「Quantum dissipative systems」 Weiss著 というのがあります。かなり専門的な本です。 量子系の本ですが、始めのほうの古典論の レビューが役に立ちます。 波動の記憶効果について書いてあるわけではありませんが 一般論が書いてあるので、波動についても、 今のご質問に簡単に応用できると思います。 記憶関数の性質や、日本語の文献は、いま整理してまとめて いるところです。 近日中にこの欄に書きこみますので、 まだ締め切らないでください。 乞う、ご期待。 遅くなってすみません。

関連するQ&A

  • 弦を伝わる横波の波動方程式

    (1)x~x+Δxにある線密度σの弦の一部分の運を考察する。y方向の変位をy(x,t)とし、弦の張力をTとすると、弦の一部分に働く力のy成分がT∂^2y/∂x^2・Δxと書けることを示せ。 (2)弦の一部分の振動を表す運動方程式を求め、それが波動方程式になることを示せ。 (3)弦を伝わる横波の伝播速度を決定する物理量は何か。 (4)ギターの弦が細いとき、音が高くなる理由を考えよ。 テスト前なのに分からないので教えていただきたいです。 お願いします。

  • 無限領域での波動方程式の計算に出てくる偏微分方程式

    波動方程式の計算に出てくる、偏微分方程式の解の計算方法が分かりません。 本から引用します: ここで、弦を伝わる波の問題などで使われる波動方程式 { (∂^2) u(x,t) } / (∂t^2) - c^2 * { (∂^2) u(x,t) } / (∂x^2) = 0 (式7.33) を考えてみよう。ここで、u(x,t)は座標xの位置での時刻tにおける弦の変位を表わし、cは正の定数とする。そして、∞に長い弦を考え(すなわち、-∞<x<∞の範囲で考え)、境界条件は、すべての t>=0 に対して u(x,t)→0 (式7.34) (x→±∞) を満たすとする。つまり、無限遠では波が存在しないとする。更に初期条件は u(x,0) = f(x) { ∂u(x,t) } / ∂t |t=0 = 0 (式7.35) とし、ここでf(x)は x→±∞ で0に近付く絶対可積分な関数であるとする。また、上式の縦棒(|)の後のt=0は、「t=0での偏微分の値」という意味である。(式7.35)のように初期条件として2つの式を与えるのは、(式7.33)がtについて2階の微分方程式だからである。今の場合、xの無限領域での関数u(x,t)を取り扱うので、フーリエ変換を使った解法を用いればよい。 例題 初期条件(式7.35)と境界条件(式7.34)を満たす(式7.33)の解を求めよ。 [解] u(x,t)のxについてのフーリエ変換を F(k,t) = ∫[-∞,∞] u(x,t) e^(-ikx) dx (式7.36) と表す。(式7.33)にe^(-ikx)を掛け、xについて-∞から∞まで積分すると、熱伝導方程式(式7.20)を導いたときと同様な考え方から、 { (∂^2)F(k,t) } / (∂t^2) + (c^2) * (k^2) * F(k,t) = 0 (式7.37) ←質問箇所 を得る。この微分方程式の解は、 F(k,t) = C[1](k) e^(ickt) + C[2](k) e^(-ickt) (式7.38) ←これをどう導いたのかが不明 であることが、代入すれば確かめられる。ここで、C[1](k)、C[2](k)は任意のkの関数で ある。 ・・・以上、引用終わり。 私は偏微分方程式自体、変数分離とかいう方法でサラッとやっただけで、上記の方法は見たことがありません。ネットで検索しましたが、同様の式を見つけることが出来ませんでした。そんな私が敢えて解こうとすると: { (∂^2)F(k,t) } / (∂t^2) + (c^2) * (k^2) * F(k,t) = 0 第2項を右辺に移項する { (∂^2)F(k,t) } / (∂t^2) = - (c^2) * (k^2) * F(k,t) 左辺の(∂t^2)と右辺のF(k,t)を交換する { (∂^2)F(k,t) } / F(k,t) = - (c^2) * (k^2) * (∂t^2) 両辺をtで積分する(もう既に未知の領域…きっと2乗が減って1乗になるのでしょう…) ln{F(k,t)} * {∂F(k,t)} / F(k,t) = - (c^2) * (k^2) * ∫(1)(∂t^2) ln{F(k,t)} * {∂F(k,t)} / F(k,t) = - (c^2) * (k^2) * t (∂t) + C[1](k) もう一度両辺をtで積分するだろう雰囲気を漂わせたところでやめておきます。 もしかしたらln{F(k,t)}を積分しなければならないのでは、と思ったら思考が停止しました。多分、既に間違っているのでしょう。 …ということで、この偏微分方程式の解き方を教えて下さい。お願いします。

  • 波動方程式について

    現在波動方程式についての勉強をしています。 授業では d^2u(x,t)/dt^2=E/P*d^2u(x,t)/dx^2 (Eはヤング率、Pは物体の密度) という式で教わっているのですが、ネット「波動方程式」と検索してもこのような式で書いているところは一つもなく、もっとややこしい複雑な式を書いているサイトばかりでした。 はたしてこの数式も波動方程式と言うのでしょうか? そして方程式というからには何かしら解というものがあると思うのですが、この波動方程式の解はいったい何なんでしょうか? 解説よろしくお願いします。

  • 波動方程式の解き方

    以下の条件をみたす解 u(t,x)を求める問題についてです. 区間(0,L) ,t>0 で u_tt = a^2 u_xx (波動方程式) をみたして 初期条件 u(0,x) = 3cos(2πx/L) , u_t(0,x) = 2cos(πx/L) 境界条件 u_x(t,0) = u_x (t,L) = 0 をみたす解 u(t,x)を求める. (注: a^2 は aの2乗 ,u_tt は uのtについての2回偏微分 , u_t はuのtについての1回偏微分) 自分は変数分離の方法でコツコツやって(u(0,x) と u_t(0,x) がどちらか一方が0のときに解をもとめてそれぞれを重ね合わせの原理で足して答えをだしました) u(t,x) = (2L/aπ)cos(πx/L)sin(πat/L) + 3cos(2πx/L)cos(2aπt/L) という結果(たぶん正しいはずです)を得たのです.  しかし,この問題の ヒント として (ヒント: 周期2Lの偶関数に拡張するとよい. ちなみにcos(2πx/L),cos(πx/L)は2Lの周期をもっている) というヒントが書いてありました.  私にはこのヒントの意味がまったく理解できません. 偶関数に拡張って なにを拡張するのですか? 勝手に拡張していいものなのですか? 拡張することによってなにかいいことがあるんですか? ということを3日間ほど考えていたのですが,どうもわかりませんでした.  なにかわかる方がいましたら この偶関数に拡張する方法でu(t,x)を求める方法を教えていただきたいです. よろしくお願いします.

  • 波動方程式における変数分離法について

    まずu(x,t)の1次元波動方程式{((∂^2)u)/(∂t^2)}=(v^2)*{((∂^2)u)/(∂x^2)}について ここでもし、u(x,y)がxの関数X(x),Tの関数T(t)の積u(x,y)=X(x)*T(t)で表すことができればこの微分方程式を解くことができる。 まずu(x,y)=X(x)*T(t)を代入すると、 {((∂^2)u)/(∂t^2)}=(v^2)*{((∂^2)u)/(∂x^2)}はX*(T'')=(v^2)*(X'')*Tとなり、 これを(v^2)*X*Tで割ると{T''/(v^2)*T}=(X''/X)となる。 この式の左辺はTのみの式、右辺はXのみの式なのでこの式が任意のx,tで成り立つためには{T''/(v^2)*T}=(X''/X)=定数Aとならなければならない。そしてこの定数AについてA<0が成り立つ。 次にu(x,y,t)の2次元波動方程式 {((∂^2)u)/(∂t^2)}=(v^2)*[{((∂^2)u)/(∂x^2)} + {((∂^2)u)/(∂x^2)}]についても同様にu(x,y,t)がxの関数X(x),Yの関数Y(y),Tの関数T(t)の積X(x)*Y(y)*T(t)で表すことができればこの微分方程式を解くことができる。 u(x,y,t)=X(x)*Y(y)*T(t)を上の2次元波動方程式に代入すると、 X*Y*T''=(v^2)*[{(X'')*Y*T}+{X*Y*(T'')}]となり、 この両辺を(v^2)*X*Y*Tで割ると、{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}となる。 この式の左辺はtのみ、右辺はxとyの式なので、この式が恒等的に成り立つためには{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}=定数Aとなる必要がある。そしてA<0でなければならない。 ※以上が変数分離法による1次・2次波動方程式を解く手順ですが、まず1次について「{T''/(v^2)*T}=(X''/X)の左辺はTのみの式、右辺はXのみの式なのでこの式が任意のx,tで成り立つためには{T''/(v^2)*T}=(X''/X)=定数Aとならなければならない」というのは一体どういう意味なのでしょうか? もし左辺がXのみの式でなかったら、例えばXとYの式だったら=定数Aとはおけないのでしょうか? 同じく2次の場合についても、「{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}の左辺はtのみ、右辺はxとyの式なので、この式が恒等的に成り立つためには{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}=定数Aとならなければならない」とありますが、これもどういう意味なのでしょうか? 詳しいかた教えてください。お願いします。

  • 1・2次元の波動方程式

    ∂^2u/∂^t2=c^2∂^2u/∂x^2 を以下の境界条件の下で解け。 (1)x=0でu=0、x=Lでu=0 (2)x=0でu=0、x=Lで∂u/∂x=0 という問題をやっているのですが、この微分方程式の解き方がわかりません。1、2階の線形、非線形微分方程式は習ったのですが、この微分方程式は、左辺はtで微分していて、右辺はxで微分していて、どういうことなのかわかりません。また、これが2次元になった場合はどのようにすればいいのでしょうか?

  • 古典的な波動方程式

    古典的な波動方程式 (∂^2)u/∂x^2=1/(v^2)・(∂^2)u/∂t^2 これに u(x,t)=Ψ(x)cosωt を代入すると (∂^Ψ)u/∂x^2+(ω^2)/(v^2)Ψ(x)=0 になるとあるのですが どのように計算すれば良いのでしょうか? 代入すると (∂^2)Ψ(x)cosωt/∂x^2=1/(v^2)・(∂^2)Ψ(x)cosωt/∂t^2 となり、これ以上すすめませんでした。

  • 波動方程式について

    wikibookの http://ja.wikibooks.org/wiki/%E6%8C%AF%E5%8B%95%E3%81%A8%E6%B3%A2%E5%8B%95_%E6%B3%A2%E5%8B%95%E6%96%B9%E7%A8%8B%E5%BC%8F%E3%81%AE%E6%80%A7%E8%B3%AA のページにあるu(x,t)=f(x+vt)+g(x-vt)を f(x+vt)=1/2(u(x,t)-v*∫(∂u(x,t)/∂x)dt) に変換する過程の式を教えてください.この式はwikibookには書いていませんが分かる方お願いします. また,もう一つお聞きたいのですが (1/v^2)*(∂^2u(x,t)/∂t^2) を積分すると単純に (1/v^2)*(∂u(x,t)/∂t) となりますか?なるとうれしいのですが. 式が見難いとは思いますが上記ふたつについて回答お願いします.

  • 弦を叩いたときの振動の様子

    理系大学一年です。 以下の問題について質問があります。 ----------------------------------------------- 両端を固定されている長さLの弦がある。この弦のある点(0<a<L)を t=0でたたいたとすると、t=0でu(x,0)=0, ∂u(x,0)/∂t=δ(x-a) ただしu(x,t)は時刻tにおける場所xでの弦の変位を表している。 この弦の運動の振動の様子を調べよ。ただし弦の波の速度をcとする。 ----------------------------------------------- この問題を解くにあたりまして、以下のように考えました。 ・両端を固定してあるのだから、初期条件がでる。  →u(0,t)=0,u(L,t)=0 ・おそらくδ関数があるので、δ関数の性質をうまく使った解き方  なのではないか。  →積分すると1・・・など。 しかし、ここから先のとっかかりが思い浮かびません。 波の速さが与えられているので、波動方程式に代入したいのですが なかなかうまくいきません。 解く流れを教えてください。よろしくお願いします。

  • 波動の問題です

    (x,t)における波動の変位が (a)y=5sin(6x-5t) 、 (b)y=3sin3(x+3t) で表わされる時、この波動の振幅、波長、振動数、角振動数、周期、伝橎速度速度を求めよ。なお、x,t の単位はそれぞれm、sとする。また、波動はx軸の正負いずれの方向に伝搬しているか。 という問題です。解き方と解答を教えていただけたら幸いです。どうかよろしくお願いします。