• 締切済み
  • すぐに回答を!

数学Bの問題・・・

数学の問題がありまして、その問題についてなるべく正解に近く、詳しい回答を知りたいのでお願いします。 座標平面上に、 円(x-2√3)2+(y-4)2=4・・・(1)と、 直線y=mx+2         ・・・(2)がある。 ただし、mは定数とする。 ※半角の2は二乗のことです。 I 円(1)と直線(2)が接するとき、mの値と、そのときの接点の座標を求めよ。 II 円(1)と直線(2)が異なる2点P,Qで交わるとき、mのとりうる値の範囲を求めよ。また、このとき線分PQの中点Mの座標をmを用いて表せ。 III Iで求めた二つの接点をA、Bとする。IIの点Mに対して、△MABの面積が√3であるとき、mの値を求めよ。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.3

Iについては接点が(a,b)のとき、 接線の方程式(a-2√3)(x-2√3)+(b-4)(y-4)=4を変形してやる手もあります。 ただ、II,IIIを考えると#2さんのやり方のほうが統一性がありますね。 なお3番はIより求めたA,Bから直線ABの式を求め、ABとMの距離を点と直線の距離の公式で求め(hとする)、またABの距離を求める(dとする)とdh/2になりますね。平方根を避ける意味で両辺2乗してmの方程式をつくって解きましょう。もっともIIIの面積は(a,b)(c,d)(e,f)3点を頂点とする三角形の面積の公式|(a-c)(b-f)-(b-d)(a-e)|/2を使う方が簡単ですが。これは数IIのベクトルのところにある公式の変形です。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

質問者さんの解答を示してわからないところについて質問してください。解答だけを求める質問のし方は削除対象になりますよ。 ヒントだけ I (1)と(2)からyを消去したxの2次方程式が重根を持つ条件が接する条件になります。判別式=0からmを求めてください。接線は2本ありますので、2通りのmがあり、それぞれのmに対して、重根(接点のx座標)を求め、それに対するyを(2)の式から求めてください。→IIIで使用。 II (1)と(2)からyを消去したxの2次方程式◆が異なる2実根を持つ条件がmのとりうる値の条件になります。判別式>0から出てくるmの不等式からmの範囲を求めてください。 また、中点のx座標は◆の方程式の2根(P、Q点のx座標をp,qが2根)について、根と係数の関係から(p+q)を求めると、PQの中点のx座標M=(p+q)/2 が求まります。 中点のy座標は(2)に代入すると求まります。 III 三角形の面積公式に3点の座標を入れてmを求める。 自分で解答を作り、分からないところの前後を示して質問してください。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

I.中心と直線との距離が半径に等しいとき接しています。 II.半径より小さいとき2点で交わっています。PQの中点は円と直線(2)を連立させて交点を考え、解と係数の関係を使って中点を求める。 III.IIの座標からIで求めたABを通る直線とMとの距離を高さ、ABを底辺で面積を求める式を作り、方程式を解く。 自分で解いてないので間違ってるかも。間違ってたらゴメンネ。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 図形と方程式

    次の問題の(2)の解き方がわからないので教えてください。 座標平面上に、円(x-2√3)^2+(y-4)^2=4(1)と、直線y=mx+2(2)がある。ただしmは定数とする。 (1)円(1)と直線(2)が接するとき、mの値と、そのときの接点の座標を求めよ。 (2)円(1)と直線(2)が異なる2点P,Qで交わるとき、mのとりうる値の範囲を求めよ。また、このとき線分PQの中点Mの座標をmを用いて表せ。 (1)は、(1)(2)からxの式にして、D=0で計算して、m=0のとき(2√3,2),m=√3のとき(√3,5)になりました。 (2)は、D>0で計算し0<m<√3まで出たんですが、その後どうすればよいかわかりません。 よろしくお願いします。

  • 数学の問題です。

    数学です。 よろしくお願いします。 直線y=mxが放物線y=x^2+1と相異なる2点P,Qで交わるとする。 mがこの条件を満たしながら変化するとき、mのとりうる値の範囲を求めよ。 また、このとき 、線分PQの中点Mの軌跡を求めよ。

  • 数学の問題です

    この問題がわかりません(´-ε-`;) 座標平面上の円C:x^2+y^2=9と直線l:y=-2x+3を考える。 tを実数とし、直線l上に点P(t,-2t+3)をとる。 (1)点Q(u,v)が円C上を動くときの線分PQの中点Mの軌跡C'を考える。ただし、もし2点P,Qが一致するならば、その一致する点をMとする。こうして得られるC'は円となる。C'の半径の値を求め、中心の座標をtの式で表せ。 (2)点Pが直線l上を動くとき、(1)で得られたC'の中心の軌跡の方程式を求めよ。 (3)円C'と(1)で得られた円C'が外接するときのtの値を求めよ。 答えは (1)半径3/2、中心(t/2,-2t+3/2) (2)y=-2t+3/2 (3)t=6±6ルート11/5です。

  • 数学の問題

    数学の問題 原点O(0,0)を中心とする半径1の円に、円外の点P(x0,y0)から2本の接線を引く。 (1)2つの接点の中点をQとするとき、点Qの座標(x1,y1)を点Pの座標(x0,y0)を用いて表せ。 また、OP*OQ=1であることを示せ。 という問題です。 接点をA,Bとすると、AとBを結んだ線分は点Pの極線だから、その方程式は x0x + y0y = 1 というのは分かります。 PA=PB だから三角形PABは二等辺三角形 よって、点Pから点Qに線を引くと、それらは垂直に交わる。 つまり、PQの方程式を求め、それとx0x + y0y = 1 との交点が点Qの座標です。 なので、PQを求めたいわけなんですが 求め方が分かりません。 y0x + x0y = 0 がPQなんですが、どうやって求めるのでしょうか? また、その座標を求めたとして、次に「OP*OQ=1であることを示せ」ですが 解説では OQ^2 = x^2 + y^2 =1/OP^2 よって、OP*OQ = 1 とあるんですが、なぜこのような考え方なのかが分かりません。 どのような考え方なんでしょうか?

  • 中2数学・一次関数の問題

    添付しました図のように、2直線y=-x+10、y=2x+10があり、3点A、B、Cは直線と座標軸との交点である。点Pは線分AC上をAからCまで、点Qは線分CB上をCからBまで動く。2点P、Gは同時出発してから、それぞれ一定の速さで動き、5秒後に同時にC、Bに到着する。(次の問いに答えなさい。) (1)出発してからs秒後に、線分PQの中点がy軸上にくる。このとき、sの値を求めなさい (2)傾きがmとnの2直線が垂直に交わる時、mn=-1である。このことを利用してPQとBCが垂直になるのは、出発してから何秒後か求めなさい。 この問題の「解き方」と「解答」をわかりやすく教えていただけないでしょうか? ☆よろしくお願い申し上げます。☆

  • 数学の問題です

    分かりません教えてください 放物線у=χ2乗上に2点P,Qがある。線分PQの中点のу座標をhとする。 (1)線分PQの長さLと傾きmで、hを表せ。 (2)Lを固定したとき、hがとりうる値の最小値を求めよ。

  • 数学の軌跡の問題

    大学入試問題集の数学の軌跡の問題について質問です。 問題・・・ 座標平面上に2点O(0,0),A(2,4)と円;x^2+y^2=64がある、また、Pをこの円周上の点とし、2点P,Aを通る弦をPQとする。 点Pが円周上を動くとき、弦PQの中点をMとして、動点Mの軌跡の方程式を求めよ。 答え・・・弦PQは点A(2,4)を通るから、 a(x-2)+b(y-4)=0とおけ、 (1) PQの中点Mを通る直線OMは、bx-ay=0 (2)とおける。 (1)、(2)をみたす実数a.b(a^2+b^2≠0)が存在するためのx,yの条件を求める という流れなのですが、(a^2+b^2≠0)というのがどこからでたのかがわかりません。 あと、(1)と(2)の式は、中点Mをa,bとおくと、OMはbx-ay=0 ・・・(2) 中天MはOから直線PQにおろした垂線の足であるので、PQの傾きは-a/b. PQは点A(2,4)をとおるのでy=-a/b.(X-2)+4なのでa(x-2)+b(y-4)=0・・・(1) とおける。というやり方で導いたのですが、違いますでしょうか?

  • この問題教えてください!

    この問題教えてください! 座標平面上において、放物線y=x^2上に異なる2点P,Qをとり、線分PQの中点をMとし、Mの座標を(a, b)とする。 (1) a=1, b=3のとき、線分PQの長さPQを求めよ。 (2) PQ=4の とき、b を a の式で表せ。 (3) PQ=4を満たしながらP, Qを動かすとき、b の最小値を求めよ。 (1)のPQが2√10になるのはわかりました。 それ以外の解答おねがいします。

  • 数学 軌跡

    円C:(x-2)2乗+y2乗=2 直線E:y=gx(gは実数の定数)について (1)円Cと直線Eが異なる2点PQで交わる時、gの取りうる値の範囲を求めよ。 (2) (1)の時、線分PQの中点が描く軌跡を求めよ。 解説お願いします( ; ; )

  • 数学の問題です

    図形と方程式の問題です 分からないので教えてください... 1 xy座標平面上の原点をO,座標が(6,0),(6,8)である点をそれぞれA,Bとする。このとき、△OABの外接円、内接円の方程式を求めよ。 2 円x^2+y^2=24と直線3x+4y=10の2交点をP,Qとするとき、線分PQの長さを求めよ。 3 点(4,2)を通り、円x^2+y^2=2に接する直線の方程式を求めよ。 4 2つの円x^2+y^2+4x-6y+9=0,x^2+y^2+2x-4y=0の2つの交点を通る直線の方程式を求めよ。 5 円x^2+y^2=9と円x^2+(y+a)^2=9が共有点を持つような定数aの値の範囲は(ア)≦a≦(イ)である。 多くて申し訳ありませんが、お願いします