• ベストアンサー

なんでこの解法ダメ??

こんばんわ、高2の男子生徒です。 「実数を定義域とする関数y=x+1/xの値域を求めよ」 答えy≦-2 2≦y 等号x=1,-1 という超簡単な問題です。 が、塾で僕が相加相乗で求めるとテストでバツされて、コメントに 「x+1/xが正or負の無限大まで発散するかどうか,全ての値を取れるかどうかわからない。不等号の意味をよく考えようね。」 とかいてあり、その後解法を4つほど教えてもらったのですが、このコメントの意味がよくわかりません。 本来ならば先生に聞けばよいのですが当分無理なのでどなたかこのコメントの意味を教えていただけませんでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
回答No.5

>それらの解説にはx+1/xが連続関数で正or負の無限大まで発散することを述べていませんでした。  これについては、あなたの解の不適を塾にき聞いてもらうしかないです。 >解説にも同じようなことが書いてありますが、この場合は不等号の意味が変わってくるのでしょうか?  「2≦y」というだけでは意味が変わるのではなく意味することが不明確なのです。今回の場合は明らかすぎて説明の必要がないと考えられたと思いますが、不等号だけではあるyの関係か値域を示しているか不明なので、あえて明記します。

Acer2
質問者

お礼

>> 「2≦y」というだけでは意味が変わるのではなく意味することが不明確なのです。今回の場合は明らかすぎて説明の必要がないと考えられたと思いますが、不等号だけではあるyの関係か値域を示しているか不明なので、あえて明記します。 そういうことなんですね。「2≦y」というだけではあるyの関係か値域を示しているか不明なのですね。確かに微妙ですよね。 どうもありがとうございました。

その他の回答 (5)

回答No.6

>x+1/xが正or負の無限大まで発散するかどうか,全ての値を取れるかどうかわからない。不等号の意味をよく考えようね。 値域を求める問題で、相加相乗平均を使うときは注意が要ることは確かです。 例を挙げましょう。 問題: 関数f(x) = (x^2 + 2) + 1/(x^2+2) の値域を求めよ。 これは簡単で相加相乗平均から、 f(x) ≧ 2 ですから、f(x)の値域は2以上の実数全体と思うかもしれません。 しかし、これは間違いです。 f(x)=2となるのは、x^2+2 = 1/(x^2+2)のとき、つまり、 (x^2 + 2)^2 = 1 のときです。左辺は必ず4以上なので、この式は成り立ちません。 f(x)=2となることはないのです。 実は、f(x)の値域は増減表を書いて調べると、2+1/2=5/2以上の実数全体であることがわかります。 この例からわかるように、相加相乗平均を使えば、 「関数がとある値以上であるということはわかるが、 そのとある値以上のすべての値をとるかまではわかりません。」 きちんと値域を求めるときは、関数の増減表を書いて調べなくてはならないのです。

Acer2
質問者

お礼

>>相加相乗平均を使えば、 「関数がとある値以上であるということはわかるが、 そのとある値以上のすべての値をとるかまではわかりません。」 そうですね。そもそも相加相乗で不等式を解こうなんてのも間違いな気がします。 ありがとうございました。

回答No.4

相加相乗で求めてもなんら問題ないように思えます。 この問題の核はy≦-2 2≦y 等号x=1,-1 ですから。 ただ、この不等式だけだったら不足は否めません。他の方法でも同じなのですが x+1/x が連続関数で正or負の無限大まで発散することを述べておく必要があるでしょう。 ほんのわずかな記述だけのことです。 へんな話ですが、y の値が100という1つの値だけであっても関係 2≦y は満たすのです。

Acer2
質問者

お礼

ご回答ありがとうございます。 >>他の方法でも同じなのですが x+1/x が連続関数で正or負の無限大まで発散することを述べておく必要があるでしょう 他の方法でも同じなのでしょうか?この問題の別解に逆像法、微分、分数関数などを教えてもらったのですが、それらの解説にはx+1/xが連続関数で正or負の無限大まで発散することを述べていませんでした。 >>へんな話ですが、y の値が100という1つの値だけであっても関係 2≦y は満たすのです 解説にも同じようなことが書いてありますが、この場合は不等号の意味が変わってくるのでしょうか?

Acer2
質問者

補足

申し訳ないのですが、明日から金曜まで家からはなれてネットが出来ない環境になってしまうので、明日からの回答は土曜日にお礼をさせていただきます。 今日中の回答は何とかお礼させていただこうと思います。 つまらない質問なのかもしれないし、僕はあまり賢くないですが、どうしても理解できないので、皆さんどうかご回答よろしくお願いします。

noname#24477
noname#24477
回答No.3

どのような解答を書いたのかわからないので 想像ですが まずx>0とx<0の場合分けはできていますね? グラフで言えば原点対称ですから、そのことが何らか 断ってあればx>0のときに言えればいいです。 相加相乗でx+1/x≧2(最小値)は言えるけれど その範囲「全体」かどうかが明らかでない、ということでしょう。 しかし関数の連続性とx→∞のとき極限が∞であることを 言えば良いと思います。 ただし連続とか∞とか高2では習っていないかも知れませんね。

Acer2
質問者

お礼

ご回答ありがとうございました。 x>0とx<0の場合分けはできています。今回は主題と外れるのであまり深く書きませんでしたが。 問題は >>関数の連続性とx→∞のとき極限が∞であること の部分なのですが、なぜそれを言わなければならないのでしょうか?なぜその範囲「全体」かどうかが明らかでないのですか?そこを教えていただけませんでしょうか??

  • kamejiro
  • ベストアンサー率28% (136/479)
回答No.2

こんばんは。高校数学から離れて10年以上経っているので、正しいかどうか分かりませんので、臆測でコメントします。 相加相乗平均の定義はあくまで「正の数または0」に限られた式だったような記憶をしています。ゆえに 「x+1/xが正or負の…」の負の数は相加相乗では適さないのではないでしょうか。 念のため、相加相乗平均とは、 (√x-√y)^2 ≧ 0 …(1) は虚根を考えない場合に成り立つものです。 もし、√x や √y が虚の数であると、大小の比較はできません。 (1)を展開すると x-2√(x*y)+y ≧ 0 x+y ≧ 2√(x*y) (x+y)/2 ≧ √(x*y) …(2)(相加平均≧相乗平均) の公式が導かれます。ただし、√x≧0、√y≧0、つまり、x≧0、y≧0という条件が付いてきます。 つまり、与式を相加相乗で解法する場合は、x≧0、1/x≧0である(つまり、x>0)の条件が付いた時だけに限ると思います。

Acer2
質問者

お礼

相加相乗については一応大丈夫です。 ちゃんとx<0のものは、-x=Xとおいて正の数で考えました。 そこら辺少し適当に書いてしまいましたごめんなさい。 ご回答ありがとうございます。

noname#14584
noname#14584
回答No.1

y=x+1/xという関数があったときに,定義域はまず実数ではないと思うのですが.関数が定義されない所(x=0ですね)は定義域には含まれないと思います. (実数から0を除いた範囲で考えます) xが0でない実数⇒y≦-2 or 2≦y このことは,Acer2さんの言っているように相加相乗等で示すことができます. しかし,値域というのは定義域を関数に代入した時の値としてとる数全体の集合ということですから,関数で送られない先,つまり,関数の値とならないようなものは省かれなければならないわけです. そうしますと, y≦-2 or 2≦y⇒xが0でない実数 つまり,y≦-2 or 2≦yであるようなどんなyに対しても,0でない実数xが存在しなければならないということを考えなければならないのです. 「x+1/xが正or負の無限大まで発散するかどうか,全ての値を取れるかどうかわからない。不等号の意味をよく考えようね。」については,まさにこのことです.つまり,値域が満たすべき条件について必要性は確認したが,十分性が確認されていないということを塾の先生は仰りたかったのだと思います。

Acer2
質問者

お礼

あまり深くx=0でないという事は気にしてませんでした。ごめんなさい。 >>つまり,値域が満たすべき条件について必要性は確認したが,十分性が確認されていないということを塾の先生は仰りたかったのだと思います。 それではx+1/xが正or負の無限大まで発散するかどうか,全ての値を取れるかを確認することが十分性を確認することになるということなのでしょうか?y≦-2 or 2≦yであるようなどんなyに対しても,0でない実数xが存在しなければならないということは関数の性質として当然だと思うので、 xが0でない実数⇒y≦-2 or 2≦y ではなく、 xが0でない実数⇔y≦-2 or 2≦y だと思うのですが・・・

関連するQ&A

専門家に質問してみよう