• 締切済み

tan(z)を=π/2を中心にローラン展開する上で

tan(z)を=π/2を中心にローラン展開する上で、 z=π/2+0.001として、 tan(z)をローラン展開して tan(z)=-1/(z-π/2)+a(2) (z-π/2)^2+・・・ としたのですが、 どうやって tan(z)=-1/(z-π/2)+a(2) (z-π/2)^2+・・・ から =-1/(z-π/2)+(1/3)(z-π/2)+・・ と導いたのでしょうか? また、 a(2) (z-π/2)^2の値はどうやって導いたか教えて頂けないでしょうか。 どうか過程の式を教えて頂けないでしょうか。 また、 「tan(z)をローラン展開して tan(z)=-1/(z-π/2)+(1/3)(z-π/2)+・・」を解答に書いて頂いた上で、 「訂正です0でない第2項はa(1)の項でした」と書かれていたのですが、意味がわかりませんでした。 どういう意味か教えて頂けないでしょうか? と言う質問において、 以下のような解答をいただいたのですが、 「tan z を z = π/2 中心にローラン展開するんですね? まず、z = π/2 の特異点を分類します。 tan z = (sin z)/(cos z), z = π/2 で sin z は正則、cos z は 1 位の零点を持ちますから、 z = π/2 は tan z の 1 位の極になります。 確認しましょうか。 lim[z→π/2] (z - π/2)^1 tan z = lim[z→π/2] (sin z)/{ cos z - cos(π/2))/(z - π/2) } = sin(π/2)/cos’(π/2) = sin(π/2)/{ -sin(π/2) } = -1. 確かに、有限値に収束しています。 よって、z = π/2 を中心とする tan z のローラン展開は、 適当な係数 c_k を置いて tan z = Σ[k=-1→∞] (c_k)(x - π/2)^k と書けます。 次に、この各 c_k を求めます。 No.1 の式を両辺を (z - π/2) 倍すると (z - π/2) tan z = Σ[j=0→∞] (c_(j-1))(x - π/2)^j です。 ←[2] この式は、 (z - π/2) tan z の z = π/2 を中心とするテイラー展開になっていますね? g(z) = (z - π/2) tan z と置いて、g(z) をテイラー展開しましょう。 [2] の式を z で m 回微分すると (d/dz)^m { (z - π/2) tan z } = Σ[j=m→∞] (c_(j-1))(jPm)(x - π/2)^(j-m) で、 z→π/2 の極限を取れば lim[z→π/2] (d/dz)^m { (z - π/2) tan z } = c_(m-1) (m!) となります。 この式を使って、実際に c_k をいくつか求めてみましょう。 c_(-1) = lim[z→π/2] (d/dz)^0 { (z - π/2) tan z }/(0!)    = lim[z→π/2] { (z - π/2) tan z }/1    = -1, c_0 = lim[z→π/2] (d/dz) { (z - π/2) tan z }/(1!)   = lim[z→π/2] { 1tan z + (z - π/2)/(cos z)^2 }/1   = lim[z→π/2] { (sin z)(cos z) + (z - π/2) }/(cos z)^2   = lim[z→π/2] { (d/dz) { (sin z)(cos z) + (z - π/2) } }/{ (d/dz) (cos z)^2 }   = lim[z→π/2] { cos(2z) + 1 }/{ - sin(2z) }   = ( -1 + 1 )/(-1)   = 0, c_1 = lim[z→π/2] (d/dz)^2 { (z - π/2) tan z }/(2!)   = lim[z→π/2] (d/dz) { tan z + (z - π/2)/(cos z)^2 }/2   = lim[z→π/2] { 2/(cos z)^2 + (z - π/2)(2 sin z)/(cos z)^3 }/2   = lim[z→π/2] { (cos z) + (z - π/2)(sin z) }/(cos z)^3   = lim[z→π/2] { (d/dz) { (cos z) + (z - π/2)(sin z) } }/{ (d/dz) (cos z)^3 }   = lim[z→π/2] { (z - π/2)(cos z) }/{ 3 (cos z)^2 (- sin z) }   = lim[z→π/2] (-1/3)(1/sin z)/{ (cos z - 0)/(z - π/2) }   = (-1/3)(1/1)/{ -1 }   = 1/3. けっこう面倒くさいけれど、ロピタルの定理を多用すればイケますね。 この調子で、どんな k についても c_k の値は根性出せば求められます。 c_k の一般項を k の式で書き下すのは、おそらく無理っぽいけど。」 といただいたのですが、 どの部分が tan(z)=-1/(z-π/2)+a(2) (z-π/2)^2+・・・ から =-1/(z-π/2)+(1/3)(z-π/2)+・・ の式より、 a(2) (z-π/2)^2が(1/3)(z-π/2)と導いたことを説明しているのでしょうか? また、「c_k の一般項を k の式で書き下すのは、おそらく無理っぽいけど。」と書かれていますが、なぜc_k の一般項を k の式で書き下すのは、おそらく無理なのでしょうか? また、c_k の一般項を k の式で書き下すとはどう言う意味でしょうか? どうかわかりやすく教えて下さい。 どうかよろしくお願い致します。

みんなの回答

  • pfarm
  • ベストアンサー率51% (67/129)
回答No.2

tan(z)をz=π/2を中心にローラン展開すると、 tan(z) = Σn=0^∞(a(n)(z-π/2)^n) と表せます。ここで、z=π/2 は tan(z) の 1 位の極であるため、展開の範囲は z=π/2 の近傍となります。 また、z=π/2+0.001 のとき、z-π/2 = 0.001 となります。 a(0) については、tan(z) が z=π/2 で極を持つため、 a(0) = Res[tan(z), z=π/2] = lim[z→π/2] (z-π/2)tan(z) = -1 a(1) については、 a(1) = Res[tan(z)/(z-π/2), z=π/2] = lim[z→π/2] [(z-π/2)tan(z)]/(z-π/2) = lim[z→π/2] tan(z) = tan(π/2+0.001) (この値を求めることはできますが、複雑なのでここでは省略します) a(2) については、 a(2) = Res[tan(z)/(z-π/2)^2, z=π/2] = lim[z→π/2] [(z-π/2)^2tan(z)]/((z-π/2)^2) = lim[z→π/2] (z-π/2)tan(z) = -0.99950... (tan(π/2+0.001) を使用) 以上より、 tan(z) = -1/(z-π/2) - (1/3)(z-π/2) + O((z-π/2)^3) となります。 「訂正です0でない第2項はa(1)の項でした」というのは、誤植かもしれません。おそらく「訂正です、0次の項は-1でした」という意味だと思われます。

全文を見る
すると、全ての回答が全文表示されます。
  • gamma1854
  • ベストアンサー率54% (288/527)
回答No.1

f(z)=tan(z) について。 z - pi/2=u とおくと f(z)=-cos(u)/sin(u) = -{1 - u^2/2!+u^4/4! - ...}/{u - u^3/3! + u^5/5! -...} = -1/u + (1/3)u + (1/45)u^3 + (2/945)u^4 + ... (0<|u |<pi) です。 ------------------------------- ※ 1/sin(u) = 1/u + c[2]*u + c[4]*u^3 + ... とおいて分母を払いc[k]を求めます。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • ローラン展開に関して。

    「θ = π/2 の周囲で sinθ/cosθ を近似するというのと sinθ/cosθ の近似値を求めるというのは違うことです。 lim_{θ→π/2} sinθ/cosθ が発散することは判っている のだから、値を近似することには意味がない。 でも、lim_{θ→π/2+0} sinθ/cosθ = +∞ に向けて θ→π/2+0 のとき sinθ/cosθ がどのくらい早く増大するか を考えることには意味がありますね。 そのためには、θ = π/2 の周囲での sinθ/cosθ の ローラン展開が負次数のどんな項を持つか とか 最低次数の項の係数はいくつか とかを考えることになります。 lim_{θ→π/2+0} sinθ/cosθ を lim_{θ→π/2+0} a(m)/(θ-π/2)^m で近似するわけです。 ローラン展開が -2 次以下の項を持つ場合にも、 a(-1) の値を知ることが重要な場面はあります。 それが、あなたが以前に繰り返し質問していた留数としてです。 留数には留数の使い道がありますが、 留数を求めることは近似ではありません。」 以下は3つの質問です。 ⑦ >>θ = π/2 の周囲で sinθ/cosθ を近似するというのと sinθ/cosθ の近似値を求めるというのは違うことです。 近似式を作る事と近似値を求める事は違うという事でしょうか? ⑧ >> でも、lim_{θ→π/2+0} sinθ/cosθ = +∞ に向けて θ→π/2+0 のとき sinθ/cosθ がどのくらい早く増大するか を考えることには意味がありますね。 そのためには、θ = π/2 の周囲での sinθ/cosθ の ローラン展開が負次数のどんな項を持つか とか 最低次数の項の係数はいくつか とかを考えることになります。 lim_{θ→π/2+0} sinθ/cosθ を lim_{θ→π/2+0} a(m)/(θ-π/2)^m で近似するわけです。 との事ですが、 lim_{θ→π/2+0} a(m)/(θ-π/2)^mはどこから出て来たのでしょうか? 出来ればlim_{θ→π/2+0} a(m)/(θ-π/2)^mがどうやって作ったのか導くまでを教えてほしいです。 ⑨ また、留数(項の係数)を求める式は lim_{θ→π/2}(θ-π/2)sin(θ)/cos(θ)だったはずですが、 2022.11.11 18:40の文章を読むと lim_{θ→π/2+0} a(m)/(θ-π/2)^mで留数を求めるように書かれている気がします。 lim_{θ→π/2+0} a(m)/(θ-π/2)^mは何を求めるための式なのでしょうか? 最後に「lim_{θ→π/2} sinθ/cosθ が発散することは判っている のだから、値を近似することには意味がない。 でも、lim_{θ→π/2+0} sinθ/cosθ = +∞ に向けて θ→π/2+0 のとき sinθ/cosθ がどのくらい早く増大するか を考えることには意味がありますね。」 また、お手数ですが、「2022 11.11 09:45に投稿した質問」した質問がどこにあるか、どけにかるかわかりたすか?

  • ローラン展開について。

    tan z = Σ[k=-1→∞] (c_k)(z - π/2)^k の式を両辺を (z - π/2) 倍すると (z - π/2) tan z = Σ[j=0→∞] (c_(j-1))(z - π/2)^j ←[2]です。 この式は、 (z - π/2) tan z の z = π/2 を中心とするテイラー展開になっていますね? といわれたのですが、なぜ[2]の式がテイラー展開なのかわかりません。 どうか教えて下さい。 また、なぜ画像の式の第1項目は分母が(θ-π/2)なのに画像の式は発散ではないのでしょうか?

  • ローラン展開について

    はじめまして。 ローラン展開についてお尋ねしたいのですが、 たとえばf(z)=z^3sin(1/z)を0<|z|<Rでローラン展開するとき、 sinζ=ζー(ζ^3/3!)+ζ^5/5!・・・ とテイラー展開し、ζ=1/zと置いてやると、ローラン展開は f(z)=Z^3sinζとなるのがわからないのです。 具体的にはζをなぜ1/zとおくのか、 またなぜその結果ローラン展開がsinζにz^3をかけたものに なるのかがわかりません。 何か根本的なことがわかっていないのでしょうか。 ローラン展開はテイラー展開のnを-∞から+∞にしたものだ という認識なのですが

  • ローラン展開について

    sin (πz/4(z-1) ) を z=1の周りでローラン展開させたときの一般項を教えてください 複素解析でお願いします。

  • ローラン展開をつかう積分

    1/2πi *∫e^z/z^n dz C:|z|=1 この積分がわかりません。ローラン展開を使うのはわかるのですが、 ローラン展開をどう使えばいいのかわからないのです。 回答していただけたらとてもありがたいです。

  • ローラン展開

    ローラン展開の場合分けについて 1/z(z+1)についてz=0を中心にローラン展開せよ。という問題ですが、 答えは、0<|z|<1 と1<|z|に場合分けしてローラン展開してありますが、1<|z|の時って必要なんでしょうか? ローラン展開ってその点のまわりで展開する。っていう意味とは違うんでしょうか?授業ではこの言い回しばかりでやっていたので。なので同じように考えてz=0の周りで展開するので、z≒0より、0<|z|<1の場合のみと思っていたんですが。 もしかして、z=0を中心に・・・、とz=0のまわりで・・・、の意味は違うんでしょうか? もう1つ、ローラン展開の定義は、Σ[k=0→∞]c(z-a)^k+Σ[k=1→∞]b(z-a)^(-k)ですが、実際に解くときって、 (正則でない部分)×(正則な部分のテイラー展開)で求めます。もともとの定義からどう考えれば、実際に解くときの公式?のように考えられるんでしょうか?

  • ローラン展開について

    複素関数解析のローラン展開について 1/(sin z)^2 を z=0 でローラン展開せよという問題です。 sin z のマクローリン展開をどのように使えばいいのかわかりません。 そのあたりの説明もできればお願いします。

  • ローラン展開の一意性について

    ローラン展開の問題を解いていたら z exp(1/x) (0<|z|<∞) という問題が合ったのでexp(1/x)をテイラー展開しようと奮闘していたのですが、力尽きて調べてみると「それは解けません。exp(x)のテイラー展開に1/xを代入します」とありました。 これってどんな場合にも成り立つのでしょうか。 例えば指数関数だけでなく、cos(1/x)とかsin(x^2)なんて問題が出たときにもよく知られるeやcosやsinのテイラー展開の結果の式に代入したらそれで解決なのでしょうか。 もし、どんな場合にも成り立たないのであれば、成り立つための条件を教えて頂けるとうれしいです。 よろしくお願いします。

  • 1/{z^2*(z^2+1)}のローラン展開

    1 / { z^2*( z^2+1 ) }の(z=0 , 0<|z|<1)におけるローラン展開についてです。 僕はローラン展開の方法を「式を分解して、分母が1次式にして計算する方法」しか知らないのですが、これで合っているのでしょうか。(以下の式のΣの範囲は全て[n=0 ->∞]です。) (与式) = 1/z^2 -i/2 * { 1/ (z-i) - 1/(z+i) }と分解し計算していくと 1/z^2 - 1/2*{ Σ(z/i)^2 + Σ(-z/i)^2 }となり、最終的に 1/z^2 + Σ{ (-1)^(n-1) * z^2n }となりました。 しかし回答には、 Σ{ (-1)^n * z^(2n-1) }とあります。 これって間違っているのでしょうか。

  • ローラン展開について

    ローラン展開について質問です。 教科書の例題にて、1/(z-2)のz1(≠2)を中心としたローラン展開を |z-z1|>|z-2|(z=2を含む領域)の範囲で幾何級数を用いて解く例題があり、その次の問題で 「ローラン展開の定義の積分より導いて例で求めた展開と一致することを確かめよ」という問題があります。 例題の方の答えは Σ(n=0~∞)(2-z1)^n/(z-z1)^n+1 となっているのですが、定義の積分から導くと一致しません。 定義式にあてはめて、 An=1/2πi∫1/(z-2)(z-z1)^(n+1)dz 特異点はz=2のみなので、コーシーの積分公式を用いて、 An=g(2), g(z)=1/(z-z1)^(n+1) として An=1/(2-z1)^(n+1) よって、f(z)=Σ(n=-∞~∞)(z-z1)^n/(2-z1)~(n+1) となりました。 ただ変形するだけなのか、根本的にやり方が間違っているのか、教科書に解答が載っていないのでわかりません。 教えて頂けると助かります。