ベストアンサー 対数関数の極限 2018/07/28 09:34 下の画像において log(1+x) - 1 lim(1/x)log(1+x) = lim(────────) x→0 x→0 x という変形になるのはなぜですか? 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー asuncion ベストアンサー率33% (2127/6289) 2018/07/28 11:19 回答No.1 log(1) = 0 だから、等号の左右で値は何も変わりません。 まあちょっとしたテクニック、でしょうか。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 対数・指数関数の極限値 (1)lim(h→0)log10(1+h)/h (10は低) (2)lim(h→∞)(1-2/x)^x の極限値を求める問題で、私は苦手なのですが… (1)は解はlog10e、でlim(h→0)loge(1+h)/h=1という極限公式を利用するのだと思いますが,どう変形したらよいのか、ちょっとわかりませんでした。 (2)は解は1/e^2、でlim(h→∞)(1+1/n)^n=eという極限公式を利用するのだと思いますが,どう変形したら解になるのか、できませんでした。 よろしければ、アドバイスを頂きたいです。お願いします。 指数・対数関数の極限 a>1のときlim[x→-∞]a^x=0 0<a<1のときlim[x→∞]a^x=0 a>1のときlim[x→∞]log_ax=∞、lim[x→+0]log_ax=∞ 教科書をみても分かりません。 それぞれどういうことか説明してください。 対数関数の極限 正負が合わない 次の問題の正答は-∞でした。 質問1 私の解き方はどこが間違っているのでしょうか。 質問2 lim[x→∞]logx/x=0を用いた解き方はありますか。 lim[x→1-0]x/logx x=-tとすると、 =lim[t→-1+0]-t/log(-t) =1.0000000000・・・・・・/log(1.0000000000・・・・・・) =1.0000000000・・・・・・/0.0000000000・・・・・・ =∞ 高校生向けのご教授をお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 指数対数の極限値 lim[x→0]{a^x-1}/xの極限を求めよ なのですが、 a^x-1=tとして lim[t→0]{tlog a}/log(t+1)としました、 解答はlog aということなので、 lim[t→0]t/log(t+1)の部分が1となるらしいのですが、 それがなぜかわかりません、 どなたか教えていただけないでしょうか? お願いします。 対数関数の微分 いつもお世話になっています。 微分のところを勉強していて x^n → n x^(n-1) sin(x) → cos(x) e^x → e^x などは導関数の定義から求めることができました。 しかし、教科書では対数関数の微分が log(x) → 1/x なることだけは 逆関数の微分を使って求めています。 そのやり方は納得できたのですが、 lim {log(x+h) - log(x)}/h から変形して求めることはできないのでしょうか? 対数と極限 ゼータ関数の解説の中で lim x→∞ (log|1-γkの-1乗*x|-log|1-γlの-1乗*x|)=0 γk,γlは tのn乗+1=0の解。k,lに条件はありません。 (γkの-1乗*xは、x÷γkの意味です。) が解説もなく当然のように出てきています。私には自明でなく、どなたか、解説していただけませんか。 三角関数の極限値 lim[x→π/4](1-2sin^2x)/(4x-π)の極限をもとめるために、t=x-π/4として、lim[t→0](cos2(t+π/4)/4tと変形し、なんとか既知のパターンにもち込もうとしているのですが、この後どのように変形してよいのかが思い浮かびません。何か違う方法があるのか知恵をお借りできないでしょうか? 指数関数の極限です lim(x→∞) 2^x-2^-x/2^x+2^-x lim(x→-∞) 1/3^x+3^-x lim(x→3+0) log1/2(x-3) 次の極限 lim(x⇒∞) (logx/x) =0 を使ってよいという条件で (2-logx)/(2x√x)の∞の時の極限を求めよ とありました。 ここで解答が、 lim(x⇒∞)2*{(log√x)/(√x)}より0と書いてありましたがどうしてこのように変形できるのかわかりません。 ご指導お願いします。 極限 証明 極限 証明 lim[x→∞](1+(1/x))^x=eの証明はどのようにすれば良いでしょうか? [証明] (logx)'=1/x より,x=1における微分係数は1である。 したがって,微分係数の定義式から lim[h→0](log(1+h)-log1)/h=1 左辺を変形して lim[h→0](1/h)・(log(1+h))=lim[h→0]log(1+h)^(1/h)=1 また、 1/h=x すなわち h=1/x とおくと,x→±∞のときh→0であるから lim[x→∞](1+1/x)^x =lim[x→-∞](1+1/x)^x =lim[h→0](1+h)^1/h=e また、以下が理解できません・・・ lim[x→∞](1+1/x)^x=lim[x→-∞](1+1/x)^xはなぜ等しいのでしょうか? そして、lim[h→0](1+h)^1/h=eとしている理由がわかりません。なぜいきなりeが出てくる? logはどこにいったのでしょうか? 極限値 lim[x→0]{log(1+x)+log(1-x)}/x^2 の極限値を求めよ。 lim[x→0]{log(1+x)+log(1-x)}/x^2 =lim[x→0]{log(1-x^2)}/x^2 =lim[x→0]log(1-x^2)^(1/x^2) x^2 を t と置くと =lim[t→0]log(1-t)^(1/t) この式からどうすれば良いかが分かりません。 教えて下さい。 よろしくお願い致します。 対数関数の最大値 底を「log_○ 真数」 の○の部分とします。 問題が y=(log_2 x)^3 -log_2 x^3 (0<x≦2)の最大値を求めなさい。 答えはx=1/2のとき最大値2 です。 log_2 x^3 は 3log_2 xと変形できますが、 (log_2 x)^3 の3を前にもってきちゃまずいですよね。 どう式変形していけばいいのかわかりません。 アドバイスお願いします。 指数関数の極限と不定形の極限の問題 極限の問題で (1)lim{(logx+log(sin)(2/x)} x→∞ logの底は2 の問題で lim(log){x・sin(2/x)} とまとめてみたのですが、そのあとの計算の解き方のアドバイスか最終的な答えを教えてください。 あと (2)lim(x-sinx)/x^3 x→0 の問題はははじめから手のつけ方がわかりません… どう考えればよいのでしょうか? 回答よろしくお願いします。 極限値の求め方教えてください。 (1)lim_(x→0){x^3/(x-sinx)} (2)lim_(x→+∞){log(x+x^2)/√(1+x^3)} (3)lim_(x→1-0){log(cosx)/log(1-x^2)} 答えがあるのですが解き方がわからないので、解説もお願いしたいです。 極限値 極限値の問題です。 lim log(2^ⅹ+3^ⅹ)/ⅹ (ⅹ→∞) lim ⅹlog(ⅹ-a)/(ⅹ+a) (ⅹ→+∞) lim (1+1/x)^x (x→+0) 答えはそれぞれ、log3、-2a、1、なのですが、何故そうなるのかが分かりません。 よろしくお願いします。 数III 対数関数の極限について 参考書を見てもいまいち解き方がすっきりしないのでどなたか教えてください よろしくおねがいします(vv lim log10 n+1/n n→∞ 極限値教えてください。 (1)lim_(x→+∞){log(x+x^2)/√(1+x^3)} (2)lim_(x→1-0){log(cosx)/log(1-x^2)} できれば、解説も教えてください。 極限の問題 極限の問題 たびたびすみません。解き方が分からない問題が他にも出てしまいました。 数IIIについてはまるっきり初心者です、ご迷惑掛けてすみません!! 公式を使ったりするのだと思いますが、どう変形すればよいのか困っています。 どれかひとつでも構いませんので、どなたか数学のできる方、お願いします!! (1)lim[x→∞](xe^x)/(e^(2x)+1) (2)lim[x→∞]{1-(log2/x)}^x (3)lim[x→+0]|x|/√(a+x)-√(a-x) (4)lim[x→-0]x/√(1-cosx) (5)lim cos(1/x) 【[x→∞]と[x→+0]の場合】 証明 極限を使ったeの表示 教科書にlim[h→0](1+h)^1/h=eの証明がのっていたのですが 分からないところがあるので教えて下さい。 [証明] (logx)'=1/x より,x=1における微分定数は1である。 したがって,微分係数の定義式から lim[h→0]log(1+h)-log1 /h=1 左辺を変形して lim[h→0]1/h log(1+h)=lim[h→0]log(1+h)^1/h=1 また 1/h=x すなわち h=1/x とおくと,x→±∞のときh→0であるから lim[x→∞](1+1/x)^x =lim[x→-∞](1+1/x)^x =lim[h→0](1+h)^1/h=e この証明の途中までは分かるのですが、「また」というあたりから何をしているのか分かりません。 何故logが無くなったか、もろもろ教えて下さい。 よろしくお願いします。 極限値の求め方 √(x^2+1)-1 lim ------------- x→-∞ x lim {log10x-log10(x+1)} x→∞ この二つの答えは -1と0なのですが、答えが出ません。 やり方と導き方を教えてください。