調和振動子の波動関数の有限なべき級数とは?

このQ&Aのポイント
  • 調和振動子の波動関数は、無限級数ではなく有限なべき級数で表す必要がある。
  • 具体的には、C_(k+2)=[(2k-2n)/{(k+2)(k+1)}]*C_kの式において、k=nのときC_(n+2)=0となり、さらにC_(n+4)+C_(n+6)+C_(n+8)=•••=0が成り立つ。
  • しかし、C_(n+3)やC_(n+5)については0にならないため、f(ξ)は有限な値に収束しない可能性がある。
回答を見る
  • ベストアンサー

有限なべき級数

調和振動子の波動関数はψ(x)は次式で表される。 ψ(x)={e^(-(ξ^2)/2)}*f(ξ) [ ξ=αx, α=√{(mω)/(h/2π)} ] f(ψ)=Σ(k=0→∞)(C_k)*(ξ^k) C_(k+2)=[(2k-η)/{(k+2)(k+1)}]*C_k ここでもし、f(ψ)が無限級数であるとすると、ψ(x)~e^{(α^2x^2)/2}となり、lim[x→±∞]ψ(x)=∞となり(|ψ(x)|)^2が確率密度となる必要条件に反する。 従ってf(ψ)は有限級数とする必要がある。 ここでC_(k+2)=[(2k-η)/{(k+2)(k+1)}]*C_kに着目する。η=2n(nは0以上の整数)とおくと、C_(k+2)=[(2k-2n)/{(k+2)(k+1)}]*C_kとなる。この式において、k=0,1,2•••と変化させるとk=nの時C_(n+2)=0となり、これ以降C_(n+4)+C_(n+6)+C_(n+8)=•••=0となり、f(ξ)は有限なべき級数となる。 質問です。 C_(k+2)=[(2k-2n)/{(k+2)(k+1)}]*C_kの式において、k=0,1,2•••nと変化させるとk=nのときC_(n+2)=0となり、続いて C_(n+4)+C_(n+6)+C_(n+8)=•••=0になるのは分かりますが、C_(n+3),C_(n+5),••••については0にならないのではないでしょうか?例えばn=3のとき、C_5,C_7,C_9=••••の方は=0となりますが、C_6,C_8については0にならず、f(ξ)=C_0+(C_1)ξ+(C_2)ξ^2+(C_3)ξ^3+(C_4)ξ^4+0+(C_6)ξ^6+0+(C_8)ξ^8+••••となって、f(ξ)は有限な値に落ちつかないのではないかと考えているのですが、詳しい方教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • tmpname
  • ベストアンサー率67% (195/287)
回答No.1

具体的に例えばn=4のとき、「C_0が何であっても」C_6 = 0であって、以降C_8 = 0, C_10 = 0....となります。ではC_1, C_3, C_5, .... についてはどうなのかというと、こちらについては「C_1 = 0なら」C_3 = 0, C_5 = 0,...となって問題ない。 今度は、n=3のとき、C_1が何であってもC_5 = 0であって、以降C_7 = 0, C_9 = 0, .... となります。ではC_0, C_2, C_4, .... についてはどうなのかというと、今回はC_0 = 0なら問題ない。 つまり、C_kについては、「有限個の奇数項だけnon-zeroで、あとは(偶数項も含めて)0」もしくは「有限個の偶数項だけnon-zeroで、あとは(奇数項も含めて)0」のどちらか、ということになります。

bohemian01
質問者

お礼

回答ありがとうございます。 C_kについて偶数項・奇数項は全て同時に0にならければならないものだと私は思っていましたが、実際には偶数項・奇数項のどちらか片方が0になるわけですね。 助かりました!!

関連するQ&A

  • フーリエ級数

    フーリエ級数の問題について教えてください! f(x)=x(o≦x<π),0(-π≦x<o) この時f(x)のフーリエ級数展開は、 π/4+1/πΣ[∞,n=1]{(-1)^n-1}cos(nx)/n^2-Σ[∞,n=1]{(-1)^n}sin(nx)/n となる。 この式をF(x)としたとき、 (1) F(π)とF(0)とF(-π)を求めよ。 また、X=Σ[∞,x=0]1/(2n+1)^4、Y=Σ[∞,x=1]1/n^2としたとき (2) 1/π∫[-π→π]|f(x)|^2を求め、さらにこれをXとYを使って表せ。 上の2題、よろしくお願いします><

  • 級数

    級数 C^n級 C^∞級 疑問 C^n級とは、n階微分可能な関数を意味すると認識しています。 C^∞級とは、n階以上微分可能な関数のことを指して言うのでしょうか? C^n級とC^∞級の違いはなんでしょうか? 剰余項について、 e^x=Σ[n=0~∞]((x^n)/(n!))→A e^x=1+x+(1/2!)x^2+・・・+(1/n!)x^n+R(n+1)→B AとBが等価なのが理解できません。 AはΣの範囲が∞です。Bは任意の自然数nです。 Bは任意の自然数nまで級数展開して、それ以降を剰余項で表しています。 Bは無限級数展開可能であるのに、n+1で打ち切っているのが理解出来ない点です。 C^1級関数の例として、y=|x|^2は適切でしょうか? y=|x|はx=0で微分可能でありません。 つまり、y=|x|はC^0級だと認識しています。 そこで、y=|x|^2はx=0で一階微分できるので、C^1級と考えました。 この考えはおかしいでしょうか? 以上、ご回答よろしくお願い致しますm(_ _)m

  • 級数展開 剰余項 計算(評価)

    級数展開 剰余項 計算(評価) e^xの巾級数展開について、 剰余項R(n+1)がlim[n→∞]R(n+1) = 0になれば、 e^x=Σ[n=0~∞]((x^n)/(n!))と表せることは理解できました。 Rの係数?は実際(1/((n+1)!))となるからe^xは巾級数展開可能 であると理解したのですが、e^xの場合lim[n→∞]R(n+1) は具体的に どのように計算(評価)されるのでしょうか? また、剰余項に関して、 R(n+1)やR(x^(n+1))などと表記されるようですが、なにか 違いはありますか? それぞれの表現について教えて頂けないでしょうか? また、C^ω級は級数展開可能である関数を表す場合に用いられると 理解したのですが、C^ω級は無限級数展開でも有限級数展開 (有限級数展開の例が思いつきませんが・・・)でもどちらでも 使用して良いのでしょうか? また、C^ω級はテーラー展開の場合(x=0で級数展開できない場合)でも 使用して良いのでしょうか? ご回答よろしくお願い致します。

  • 複素フーリエ級数

    この問題の解き方を教えて下さい。 問. f(x) = 1 - |x| (-2≦x≦2) 周期4(周期2L=4よりL=2) の複素フーリエ級数を求めよ。 答え・・・Σ(n= -∞~∞) 2(1-(-1)^n)/(n^2 * π^2) * e^(inπx/2) 複素フーリエ級数:Σ(n= -∞~∞) Cn* e^(inπx/L) Cn = 1/2L ∫(-L → L) f(x) * e^(-inπx/L) <解いたやり方> Cn = 2 * (1/4) ∫(0→L) (1-x)*e^(-inπx/2) dx = (1-(-1)^n)/inπ - (2(1-(-1)^n)/(n^2 * π^2)) ← この時点で間違っています。 C0 = 0 よろしくお願いします。

  • 無限級数 C^∞級 意味

    無限級数 C^∞級 意味 マクローリン展開を勉強していてちょっと分からない点が あるので質問させて下さい。 無限級数とは、Σ[k=1~∞]akのような級数の事だと認識しています。 因みに、級数とは数列a1,a2・・・akを加法で結んだものだと認識しています。 C^∞級とは、f(x)無限階微分可能かつf^∞(x)が連続である事だと認識しています。 上記認識で正しいでしょうか? また、マクローリン展開の余剰項が理解できていないので教えて下さい。 e^xのマクローリン展開すると、 e^x=1+x+(1/2!)x^2+・・・+(1/n!)x^n e^x=Σ[n=0~∞]((x^n)/(n!)) となります。 n次以上の余剰項をどのように表してよいか分からないので すが、余剰項について詳しく教えて頂けないでしょうか? 以上、よろしくお願い致します。

  • 数学(フーリエ級数)について

    この問題の解き方を教えて下さい。よろしくお願いします。 f(x)=| x |の複素フーリエ級数を求めよ。 (-1≦x≦1), 周期2 答え・・・(1/2) - Σ(n=-∞~∞) ((1-(-1)^n)/(n^2*π^2)) e^inπx C0 = (1/2)∫(-1→0) (-x) dx + (1/2)∫(0→1) x dx = 1/2 Cn = -1/2 ∫(-1→0) x e^(-inπx) dx + (1/2)∫(0→1) x e^(-inπx) dx = -(1/2) { (-1)^n * i/nπ - 1/(n^2*π^2)*(1-(-1)^n) } + { (1/2) (-1)^n * i/nπ + (1/(n^2*π^2))*(1-(-1)^n) } =(1-(-1)^n)/(n^2*π^2)となってしまいました。 - があるかないかの違いですが何度やっても - にはなりません。 やりかたは合っていますか?

  • 数学3の級数の問題がわかりません。

    数学3の級数の問題がわかりません。 極限 lim[n→∞] (1/n)•{(n+1)(n+2)••••(n+n)}^(1/n) を求めよ。 lim[n→∞](1/n)Σ[k=1→n]f(k/n)=∫[0→1]f(x)dx という公式はしってます。 お願いします!

  • フーリエ級数について

    次の問題を解いてください。 周期2πの関数f(x)が区間-π<x≦πにおいて次のようにフーリエ級数に展開されている。 f(x)=Σ[n=1,∞]2sin(nx)/n ここで、関数g(x)が区間-π<x≦πにおいて区分的に連続で、そのフーリエ級数は g(x)=c_0/2 + Σ[n=1,∞](c_n cos(nx)+d_n sin(nx)) で表されるとき、次の二つの関係式を三角関数の直交性を用いて説明せよ。 I_1=(1/2π)∫[-π,π]f(x)g(x)dx=Σ[n=1,∞]d_n/n I_2=(1/2π)∫[-π,π]f(x)g(x+t)dx=Σ[n=1,∞](d_n cos(nt)-c_n sin(nt))/n くわしくお願いします。

  • フーリエ級数

    大学からの課題なのですが、数学はあまり得意出ない上、高校で勉強した内容よりもレベルが上の難易度のようで、 色々と頑張っては見たのですが現在の自分の力だけではどうにも解く事が出来ないので、よかったらお教えください。 関数f(x)はxの全ての実数値に対し定義されていて、2πを周期に持つとする。 すなわち、f(x + 2π)=f(x),さらに,積分 ∫-π^π|f(x)|dxが存在するとする。このとき、関数f(x)は 以下のように展開できる。 f(x)=a0/2+Σ[n=1,∞](an cos nx + bn sin nx) (1) ここで、係数an,bn次式で計算される。 an=1/π∫-π^π f(x)cos nx dx (n=0,1,2,....), (2) bn=1/π∫-π^π f(x)sin nx dx (n=1,2,....), (3) さて特に、f(x)={ -1 (-π≦x<0,π=π) +1 (0≦x<π) }    (4) の場合を考える。このとき以下の問に答えよ。 【1】an=0(n=0,1,2,....)であることを示せ。 【2】bnが次式で与えられることを示せ。 bn={ 0 (n=2,4,...) 4/nπ (n=1,3,5,...) } 【3】 【1】式の無限級数の和を、n=5までの和で近似せよ。 すなわち、 f(x)= a0/2 + Σ[n=1,5](an cos nx + bn sin nx)=4/πΣ[n=1,3,5]sin nx/n (5)

  • 複素フーリエ級数について

    周期2πの複素フーリエ級数は f(x)=Σ[n=-∞,∞] C_n•e^inx C_n=(1/2π) ∫[-π→π] e^(-inx)•f(x)dx で、あらわされる。 これを周期2Lになったら、どうなるか? という問題なのですが、どうしたらいいのか分かりません。 やり方を教えてください。 あと、答えだけでいいので、教えてください。