• ベストアンサー
  • すぐに回答を!

漸化式の問題なのですが。

数列{an}で初項から第n項までの和をSnとするとき、 Sn=2an-nという関係だと、一般項はどうなるか。 という問題なのですが。 数列は {an}=a1+a2+a3+a4+a5+・・・・・・・+an=2an-n 書いてみたのですが、どうにも何をしたらよいのか分からなくて困っています。 やはり階差をとって階差数列にして考えるのでしょうか?

noname#46922

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数511
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • p-masa
  • ベストアンサー率57% (11/19)

和から一般項を求めるときは、 (1)a_1=S_1 (2)a_n=S_n-S_(n-1) n≧2のとき成立 と、2つの関係を使って解きます。 ちなみに、_1は添え字をあらわす。 よって、 a_1=S_1=2a×1-1 =2a-1 n≧2のとき a_n=S_n-S_(n-1)   =2an-n-{2a(n-1)-(n-1)}   =2an-n-2an+2a+n-1 =2a-1 これは、n=1のときも成立(n≧2のときで話をしているので、n=1のときも成立することがいえれば、すべてにおいて成立することがいえる) ゆえに、a_n=2a-1 [おしまい(一般項は定数だね)]

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数IIBの数列の漸化式の問題です。

    数IIBの数列の漸化式の問題です。 本当に分からないので、基礎の知識から詳しく教えてもらえるとありがたいです・・・ 1. 数列1,1,4,1,4,9,1,4,9,16,1,4,9,16,25,・・・・・・がある。 この数列の第100項および初項から第100項までの和を求めよ。 2 数列1,2,3,・・・・・,nにおいて次の積の和を求めよ。 (1)異なる2つの項の積の和(n≧2) (2)互いに隣り合わない異なる2つの項の積の和(n≧3) 3 次の条件によって定められる数列{An}の一般項を求めよ。 (1)A1=1 An+1=9-2An (2)A1=1 An+1=4An+3 4 数列{An}の初項から第n項までの和SnがSn=n-Anであるとき、a1,a2,a3および{An}の一般項を求めよ。

  • 数学Bの漸化式です

    数学Bの漸化式です わからない問題があるのでわかりやすく教えて下さい。 [問題] ある数列{an}において、初項から第N項までの和をSnと表す。 この数列が関係式Sn=2an+Nを満たすとき、初項a1と一般式anを求めよ。 と言う問題です。よろしくお願いします。

  • 漸化式と数列

    数列a1,a2,......anが a1=2, an+1=3an+8(n=1,2,3,......)を満たしている時 (1) 一般項anをnであらわせ (2) 初項から第n項までの和をSnであらわせです 考え方を教えてください ちなみに答えは an=2/3^n -4 Sn=3^n+1  -4n-3です

その他の回答 (2)

  • 回答No.3
noname#24477

Sn=2an-n のanというのは第n項のことですか? そうとすれば、 a_n=S_n-S_(n-1)=2a_n-n-{2(a_(n-1))-(n-1)} 整理すると漸化式ができます。 見づらいので a_nのように書いたほうがいいでしょう。 (めんどうだけどね)

共感・感謝の気持ちを伝えよう!

  • 回答No.1
noname#6715

Sn=ΣAnの時、 An=Sn-S(n-1)です。よく考えてみてください

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 階差数列の公式に関する質問

    階差数列の公式に関する質問です。 階差数列からもとの数列を求める公式 n≧2のとき An=A1 + Σ(Ak+1 - Ak) ですが、n=1のとき成り立たない場合があるのでしょうか? 今まで問題を解いている中ではすべてn=1のときも成立しました。n=1の時を考えるとΣの範囲がおかしくなるのでn≧2で考えると先生から聞きましたが、n=1でも一般項が成立しています。 和と一般項の関係 n≧2 Sn - Sn-1 = An n=1 S1 = A1 の場合はn=1で成り立たない場合は何回か解いたことがあります。 もし階差数列でn=1が成り立たない場合があるのでしたら、それはどのような場合でしょうか?

  • 漸化式

    数列{an}において、初項から第n項までの和Snとanの間に、 Sn=2an-nの関係があるとき、 一般項anを求めよ。 という問題で、 n≧2のとき、an=Sn-Snー1 となるのはどうしてですか? おねがいします!

  • 数列

    数列a1,a2,……,anがa1=2,an+1=3an+8(n=1,2,3,……)を満たしているとき (1)一般項anをnで表せ。 (2)初項から第n項までの和Snをnで表せ。 解答 (1)an=2*3^n-4 (2)Sn=3^n+1-4n-3 階差数列を使ったらよさそうなのは分かりますが、 いまいちピンときません。 途中式含めて解説をよろしくお願いします。

  • 階差数列の解き方

    {an}:1,2,5,10,17,26,・・・ などの等差数列を使う階差数列は分かるんですけど {an}:5,6,4,8,0,16,-16,48・・・ の時に一般項anを求める等比数列を使う階差数列の解き方がわかりません。 この場合、初項1、公比-2の等比数列の和を求めて anの初項5を足したらいいんでしょうか?

  • 漸化式

    b1=1、bn+1=bn+6n+1を満たす数列{bn}について (1)一般項bnを求めよ (2)初項から第n項までの和Snを求めよ という問題です。恥ずかしながら、この漸化式がどのような数列を意味しているのかすら分かりません。階差数列かな?とは思ったのですが、思っただけで考え方がストップしてしまっています。非常に簡単な質問かもしれませんが、どなたか教えて下さい。お願いします。

  • 数学B階差数列について

    階差数列から一般項を求める、というところで 公式で 数列{an}の階差数列を{bn}とすると n≧2のとき an=a1+(ΣK=1からn-1)bK という公式がのっています 何故n≧2のときなんですか?

  • 平方数列の階差数列

    数列   {an}が{3,6,9,11,18,27,38,…}の時 階差数列{bn}は{3,5,7,9,11…}で、 {bn}の初項からn-1までの和は、 1/2(n-1){2*3+2(n-2)}だそうですが (n-2)の2が分りません。 等差数列の和の公式は、 Sn=n/2{2a1+(n-1)d}です。(n-2)は(n-1)を教科書が間違えているのでしょうか?

  • 数列

    数列{an}の初項から題n項までの和をSnとしたとき、一般項anを求める方法を考えると Snというのは Sn=a1+a2+a3+a4+a5+・・・+an-1+anですよね。 一般項を考えると Sn-1+an=Snとなります。 an=Sn-Sn-1 となることはわかりました。 しかし Sn-1が意味を持つのはn≧2のときであるとあると書いてあります。どういうことをいっているのですか?

  • 漸化式の問題です

    こんな問題が出てきました。  A1=3  An+1=An+2^n  これの一般項Anを求めよ。 ここで私は、まず上式を使って、 A1=3 A2=5 A3=9  ・  ・  ・ と求め、そこから階差数列と分かり、さらに An+1-An=2^n と変形し、そこから求めようと思いました。 しかし、どうしても答えがずれてしまいます。 正しい解きかたと解答を教えてほしいです。 回答よろしくお願いします。

  • 高2の数学で数列がわかりません

    数学の問題です。 数列2/3,2/5.4/5,2/7,4/7,6/7,2/9,4/9,6/9,8/9,2/11・・・・・において (1)4/15はこの数列の第何項か。 (2)この数列の第100項の数は何か。 a1=4,an+1=3an+2^3(n=1,2,3,・・・・)で定めらた数列 {an}の一般項を求めよ。 次の数列の和を求めよ。 (1)1・n+2・(n-1)+3・(n-2)+・・・・・+n・1 (2)7+77+777+7777+・・・・・・+777・・・77 777+77はn個とする 次の和を求めよ。 (1)n Σ1/(2k-1)(2k+1) k=1 (2)n Σ1/k(k+1)(k+2) k=1 a1=5,an+1=2an-3n+4(n-1,2,3,・・・・・・)で定められた数列{an}の一般項を求めよ。 a1=1,a2=1,an+2-an+1-2an=0(n=1,2,3,・・・・・)で定められた数列{an}の一般項を求めよ。 数列{an}の初項から第n項までの和Snが3Sn=4an-3N-1(n=1,2,3,・・・・・)を満たすとき (1)初項a1を求めよ。 (2)一般項anおよび和Snを求めよ。 数列11,1001,100001,10000001,・・・・・について (1)この数列の一般項anを求めよ。 (2)この数列の項はすべて11の倍数であることを証明せよ。 宿題ですが数列が全くわかりません。どうかお願いいたします。