• ベストアンサー

バームクーヘン法と置換積分

y軸回転についてですが、逆関数をとることが難しい場合、∫πx^2f'(x)dxと置換して解くというのがありますが、これとバームクーヘン法で求める答えは同じになりますよね? y=e^xの場合、∫(1→e^2)πx^2dyを求めるのに置換した場合、∫(0→2)πx^2e^xdx=2π(e^2-1)となりますがバームクーヘン法でやる場合、∫(0→2)2πxe^xdx=2π(e^+1)になるのですが、どこがおかしいのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

y のとりうる値の範囲は 0く=yく=e^2 だから、 x=x,x=x+dx で、切り取った図形を y 軸に関して 1 回転させて ドーナツ状にして、それを切って伸ばすと、 縦が、(x+dx)-x=dx 横が、ドーナツ状の内径 2πx 高さが、e^2-e^x (← ここが間違えているのでは? )  の直方体 とみなすことができるから、 ∫[0→2]2πx(e^2-e^x)dx になるのではないでしょうか。

その他の回答 (2)

回答No.3

すみません y のとりうる値の範囲は、 1<=y<=e^2 です。 この、 e^2 を忘れていたのではないでしょうか。 グラフを描いて、確かめて下さい。

  • f272
  • ベストアンサー率46% (8010/17118)
回答No.1

> ∫(0→2)2πxe^xdx=2π(e^+1)になる 計算を間違っているだけです。

04141623
質問者

補足

すみません、2π(e^2+1)でした。けど、何回やっても上記の答えにしかならないです泣

関連するQ&A

  • 定積分の問題について

    定積分の問題についておしえてください 以下の問題の答えをおしえていただけないでしょうか 1.閉区間[α、β]で定義された連続関数y=f(x)のグラフを、x軸の周りに回転して得られる回転体の体積は V=π∫(αからβ){f(x)}^2dxで与えられる。これを用いて、半径aの球の体積を求めよ。 2.ε,k,Mを正の定数として、次の定積分を求めよ。 (a)∫(εから1)dx/x (b)∫(εから1)x^-kdx(k≠1) (c)∫(0からM)sinxdx (d)∫(0からM)xe^-xdx (e)∫(0からM)dx/e^x+1 (f)∫(0から1/2)dx/√1-x^2 お願いします。

  • バウムクーヘン積分

    数3の積分の体積の問題です。教えてくださいorz 曲線 y=kcosx とx軸、y軸によって囲まれる図形をx軸およびy軸のまわりに 1回転してできる2つの立体の体積が等しくなるような正の定数 kの値を求めよ。 これをバームクーヘン積分でとくとどうなるでしょうか? 教えてください・・・ 補足 自分は0からπ/2の図形(4分の1円)の積分で考えたのですが、 友達は-π/2からπ/2の図形(半円)で考えて、ふたりの答えが違ってます。。 自分は4-8/πになったのですが、 友達は2-4/πに… どっちがあってますか?

  • dy/dx・dxは置換積分を使ってdy?

    次の微分方程式を解け 2yy'=1 とありました。解答は -------------------------------- 2y・dy/dx=1の両辺をxで微分して ∫2y (dy/dx) dx=∫dx 置換積分法により ∫2y dy=∫dx ゆえに y^2=x+C (Cは任意定数) -------------------------------- となっています。ここで疑問に思ったのが ”置換積分法により”という箇所です。 これはdy/dx・dxを”約分して”dyにしてはならず、 ”置換積分法により”dyにしなくてはならない、 ということが言いたいのだと解釈しました。 疑問1. そこで、ここにおける”置換積分”とは具体的には どのような作業を指すのでしょうか? 疑問2. 以下は全て同じことを表現したいと意図している のですが、誤解を招くことはないでしょうか? 2y・dy/dx・dx    2y (dy/dx)・dx   2y dy/dx dx 2ydy/dx dx 2y*dy/dx*dx 2yとdyの間に半角スペースを入れた方がよいか ・と*と半角スペースどれが妥当か dy/dxは()でくくるべきか などなどです。

  • 逆関数の置換積分の原理をもう少し深く理解したいです

    逆関数の置換積分が根本的に分からないのです。(置換積分の考え方についての質問です。) 「πx^2sin(πx^2)の1≦x≦0までの区間とx軸に囲まれた平面をy軸周りに回転させて出来る立体の体積を求めよ」という問題でそれに気づかされました。 有名問題そうなのでグラフの様子や答え自体は周知という前提で話を進めます。 この問題のある解き方ではまず0≦x≦1なる極点のx座標をα(y座標をy1)とします。 そしてαを境目として、問題の関数を2つの逆関数x=g1(y)(0≦x≦α)、x=g2(y)(α≦x≦1)で表現すると、その回転体の体積は∫[0,y1]π(g2(y))^2dy-∫[0,y1]π(g1(y))^2dyとなり この式についてy=f(x)とおくと∫[1,α]πx^2f'(x)dx-∫[0,α]πx^2f'(x)dxとなるということだったと思います。あとはごちゃごちゃ計算すれば値πが求まるわけです。 y=f(x)と置いた後の積分の式はdyの部分がf'(x)dxになっていて、これは置換積分の公式y=f(x)dx⇔y=f(g(t))dx/dt*dtについて、tをyと見て適用した結果が素直に反映されているように見えます。 疑問なのはg1,2(x)^2がx^2になっているところで、なんでこうなるのかちゃんとは理解できていないようなのです。 x=g(y)のような式をy=f(x)でおくのだからx=g(f(x))ということになるでしょう。これは公式のf(g(t))に対応すると思います。公式のこの部分は、tで置換積分すると決めたらf(x)の変数xが全てtで表されるようにしろという意味で私は理解しています。 たとえばx(x-2)^3のような式を積分するならt=x-2と置くでしょうが、そのとき式中の(x-2)は宣言した通り一文字のtで置き換えるだけですしt=x-2はxについて解けますからそれを代入することによって式はtだけの式で表されるということになります。 ですがこれと違って、y=f(x)でおくという場合代入という考え方で式の同値変形ができるわけではありませんよね。公式を適用する中でg(f(x))=xというのはどうやって導出するものなのかが分からないのです。 考えてみたら、逆関数として表現したものを逆関数で置きなおすのだからx=g(y)という等式で結ばれたxでそれは表現されるというのは「なんとなく」そんな気がしますし、これに限っては「逆関数の逆関数はx」と暗記することで済むと思います。 しかし数学なのだから考え方が正しければ途中過程によらず正しい答えにたどり着くという前提のもとで、置換積分の際の置き方というのは自由なはずですから、たとえばy=f(x)ではなくy=2f(x)として置換積分したらどういう流れで元の結果に行き着くだろうと考えたのですが、全くわからなくなりました。 y=2f(x)ですからdy=2'f(x)dxなのは当然でしょう。するとg(2f(x))は2'f(x)dyの2が打ち消されるような式でなければならないわけです。置き換える前の式は∫[0,y1]π(g2(y))^2dyのように式が二乗されていますから求める式はg(2f(x))はx/√(2)ということになる、のでしょうか?いよいよ分からなくなるわけです。x/√2という式でたとえ合っていたとしても、また別の、答えがあらかじめわかっておらず、こうしたつじつま合わせが使えない別の問題は解くことができないのです。 長くなりましたが、なぜ最初の問題について積分の中身をg(y)^2がx^2となるのか、y=2f(x)のように置いた場合にも応用が利くような考え方でご解説いただきたいと思います。よろしくお願いします。

  • 置換積文の添削お願いします

    置換積文を用いて求めよ (1)∫3/2→2 (2x-3)^3dx 答え 1/8 (2)∫0→1 √4-3xdx  答え -14/9 (3)∫0→π/3 sin(1/2x-π/6)dx  答え -2-√3 (4)∫-2/3→0 e^3x+1dx 答え e/3-1/3e (5)∫0→2 1/(2x+1)dx 答え 1/2log5

  • 積分

    曲線y=f(x)=x√(1-x^2)とx軸で囲まれた部分をy軸のまわりに一回転してできる回転体の体積Vをもとめよ。ただし0≦x≦1とする。 という問題ですが、私はバームクーヘン分割による積分を使って、V=2π∫[0,1]xf(x)dxとしましたが、この積分がうまくいきません。 x=sinθとおいたのはいいものの、xが0→1のときθは0→π/2をつかうのかπ→π/2をつかうのか・・・・ おもいきって0→π/2でといても答えのπ^2/8とはなりません・・・ よろしくお願いします。

  • 部分積分法

    部分積分法にて解きましたが途中計算のどこかが間違っており答えにたどり着きませんでした。 ミスした箇所を教えていただけると嬉しいです。 ∫x^(2) (e^x) dx = x^(2) ・-e^(-x) - ∫2x・-e^(-x) dx = -x^(2)・e^(-x) + 2∫xe^(-x) dx  ・・・(1) ----------------------- 上記の式の∫xe^(-x) dx について積分 ∫xe^(-x) dx = -xe^(-x) - ∫-e^(-x) dx = -xe^(-x) + e^(-x) dx これを(1)の部分に当てはめる = -x^(2)・e^(-x) + 2{ -xe^(-x) + e^(-x) } = -x^(2)・e^(-x) - 2xe^(-x) + 2e^(-x) = -{x^(2) + 2x - 2 }e^(-x) + C     ← 答え しかし解答は  -{x^(2) + 2x + 2 }e^(-x) + C になります。私の回答とは +2 と-2の違いなのですが、 どこから、差がでているのかがわかりませんでした。

  • 陰関数そのものを使った積分の計算法

    いろいろな曲線の表示において、微分や積分の計算法を整理してみました。 x^2+y^2=4上の点(x,y)=(1,√3)でのdy/dxの値の求め方。 陽関数。y=√(4-x^2)よりdy/dx=-x/√(4-x^2)。x=1のとき、dy/dx=-1/√3。 媒介変数。x=2cos(θ),y=2sin(θ)とすると、dy/dx=dy/dθ÷dx/dθ=-cos(θ)/sin(θ)。 θ=π/3のとき、dy/dx=-1/√3。 逆関数。x=√(4-y^2)よりdy/dx=1÷dx/dy=-√(4-y^2)/y。y=√3のとき、dy/dx=-1/√3。 極座標に変数変換。(x,y)→(r,θ) (ただし、x=rcos(θ),y=rsin(θ))とすると、(1,√3)→(2,π/3)。 x^2+y^2=4→r=2。dx=cos(θ)dr-rsin(θ)dθ、dy=sin(θ)dr+rcos(θ)dθ。dr/dθ=0。 よって、dy/dx=-cos(θ)/sin(θ)。θ=π/3のとき、dy/dx=-1/√3。 陰関数。2x+2y(dy/dx)=0より、dy/dx=-x/y=1/√3。 y≧0,x^2+y^2≦4の面積の求め方。 陽関数。境界はy=√(4-x^2)より∫[-2,2]ydx=∫[-2,2]√(4-x^2)dx=[(1/2)√(4-x^2)+2arcsin(x/2)] [-2,2] = 2π 媒介変数。境界をx=2cos(θ),y=2sin(θ)とすると、∫[-2,2]ydx=∫[π,0]2sin(θ){-2sin(θ)}dθ = 2π 逆関数。境界はx=√(4-y^2)より∫[-2,2]ydx=2∫[0,1]y(dx/dy)dy=2∫[2,0]y(-y/√(4-y^2))dy=2π 極座標に変数変換。(x,y)→(r,θ)(ただし、x=rcos(θ),y=rsin(θ))とすると、 [y≧0,x^2+y^2≦4]→[0≦r≦1,0≦θ≦π]、ヤコビアンはr。よって、 ∫[y≧0,x^2+y^2≦4]dxdy=∫[0≦r≦2,0≦θ≦π]rdrdθ=2π 以上のように計算法を比べてみると、陰関数そのものを使った積分の計算法を僕は知りません。 数学の理論はボタンをかけるように、パラレルな理論があると信じているのですが、 一方を知らないので気になります。 陰関数そのものを使った積分の計算法があれば教えていただけますようお願いいたします。

  • 置換積分

    ∫1/(2e^x+1)dxを t=2e^x+1として置換し積分すると log|2e^x/(2e^x+1)|となると思いますが 回答はlog|e^x/(2e^x+1)| 答えを微分すると どちらも被積分関数に戻ると思います 置換の仕方に数学的に 何か重要なミスあるのでしょうか? それ違うならこの方法のダメところ教えてください 多分バカな質問だと思いますが 教えてください

  • 数3。積分の解法。体積を求める時の解法

    y=log(x+1)をy軸の周りに回転してできる立体の体積を求めよ という問題がありました。 で、 yが0→1のとき、 π∫x^2dyとおきました。 ここで、解答例ではx^2=(e^y-1)^2とおいて計算していきます。 これはわかります。 しかし僕はdy/dx=1/(x+1)とおいて、 xが0→e-1のとき、 π∫x^2/(x+1)dx とおいて計算していったんですが、どうも答えがうまく出ませんでした。 考え方が間違ってるのでしょうか? 何回か計算したので計算ミスはないと思うのですが・・・。 わかる方、間違っているところを教えていただけませんでしょうか? ちなみに、受験中の問題ではないので大丈夫です(^_^;)