• ベストアンサー
  • すぐに回答を!

バームクーヘン法と置換積分

y軸回転についてですが、逆関数をとることが難しい場合、∫πx^2f'(x)dxと置換して解くというのがありますが、これとバームクーヘン法で求める答えは同じになりますよね? y=e^xの場合、∫(1→e^2)πx^2dyを求めるのに置換した場合、∫(0→2)πx^2e^xdx=2π(e^2-1)となりますがバームクーヘン法でやる場合、∫(0→2)2πxe^xdx=2π(e^+1)になるのですが、どこがおかしいのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数380
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

y のとりうる値の範囲は 0く=yく=e^2 だから、 x=x,x=x+dx で、切り取った図形を y 軸に関して 1 回転させて ドーナツ状にして、それを切って伸ばすと、 縦が、(x+dx)-x=dx 横が、ドーナツ状の内径 2πx 高さが、e^2-e^x (← ここが間違えているのでは? )  の直方体 とみなすことができるから、 ∫[0→2]2πx(e^2-e^x)dx になるのではないでしょうか。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 逆関数の置換積分の原理をもう少し深く理解したいです

    逆関数の置換積分が根本的に分からないのです。(置換積分の考え方についての質問です。) 「πx^2sin(πx^2)の1≦x≦0までの区間とx軸に囲まれた平面をy軸周りに回転させて出来る立体の体積を求めよ」という問題でそれに気づかされました。 有名問題そうなのでグラフの様子や答え自体は周知という前提で話を進めます。 この問題のある解き方ではまず0≦x≦1なる極点のx座標をα(y座標をy1)とします。 そしてαを境目として、問題の関数を2つの逆関数x=g1(y)(0≦x≦α)、x=g2(y)(α≦x≦1)で表現すると、その回転体の体積は∫[0,y1]π(g2(y))^2dy-∫[0,y1]π(g1(y))^2dyとなり この式についてy=f(x)とおくと∫[1,α]πx^2f'(x)dx-∫[0,α]πx^2f'(x)dxとなるということだったと思います。あとはごちゃごちゃ計算すれば値πが求まるわけです。 y=f(x)と置いた後の積分の式はdyの部分がf'(x)dxになっていて、これは置換積分の公式y=f(x)dx⇔y=f(g(t))dx/dt*dtについて、tをyと見て適用した結果が素直に反映されているように見えます。 疑問なのはg1,2(x)^2がx^2になっているところで、なんでこうなるのかちゃんとは理解できていないようなのです。 x=g(y)のような式をy=f(x)でおくのだからx=g(f(x))ということになるでしょう。これは公式のf(g(t))に対応すると思います。公式のこの部分は、tで置換積分すると決めたらf(x)の変数xが全てtで表されるようにしろという意味で私は理解しています。 たとえばx(x-2)^3のような式を積分するならt=x-2と置くでしょうが、そのとき式中の(x-2)は宣言した通り一文字のtで置き換えるだけですしt=x-2はxについて解けますからそれを代入することによって式はtだけの式で表されるということになります。 ですがこれと違って、y=f(x)でおくという場合代入という考え方で式の同値変形ができるわけではありませんよね。公式を適用する中でg(f(x))=xというのはどうやって導出するものなのかが分からないのです。 考えてみたら、逆関数として表現したものを逆関数で置きなおすのだからx=g(y)という等式で結ばれたxでそれは表現されるというのは「なんとなく」そんな気がしますし、これに限っては「逆関数の逆関数はx」と暗記することで済むと思います。 しかし数学なのだから考え方が正しければ途中過程によらず正しい答えにたどり着くという前提のもとで、置換積分の際の置き方というのは自由なはずですから、たとえばy=f(x)ではなくy=2f(x)として置換積分したらどういう流れで元の結果に行き着くだろうと考えたのですが、全くわからなくなりました。 y=2f(x)ですからdy=2'f(x)dxなのは当然でしょう。するとg(2f(x))は2'f(x)dyの2が打ち消されるような式でなければならないわけです。置き換える前の式は∫[0,y1]π(g2(y))^2dyのように式が二乗されていますから求める式はg(2f(x))はx/√(2)ということになる、のでしょうか?いよいよ分からなくなるわけです。x/√2という式でたとえ合っていたとしても、また別の、答えがあらかじめわかっておらず、こうしたつじつま合わせが使えない別の問題は解くことができないのです。 長くなりましたが、なぜ最初の問題について積分の中身をg(y)^2がx^2となるのか、y=2f(x)のように置いた場合にも応用が利くような考え方でご解説いただきたいと思います。よろしくお願いします。

  • 定積分の問題について

    定積分の問題についておしえてください 以下の問題の答えをおしえていただけないでしょうか 1.閉区間[α、β]で定義された連続関数y=f(x)のグラフを、x軸の周りに回転して得られる回転体の体積は V=π∫(αからβ){f(x)}^2dxで与えられる。これを用いて、半径aの球の体積を求めよ。 2.ε,k,Mを正の定数として、次の定積分を求めよ。 (a)∫(εから1)dx/x (b)∫(εから1)x^-kdx(k≠1) (c)∫(0からM)sinxdx (d)∫(0からM)xe^-xdx (e)∫(0からM)dx/e^x+1 (f)∫(0から1/2)dx/√1-x^2 お願いします。

  • 置換積分法について

    今置換積分を一人寂しく学んでいる者です(´・ω・`) 聞きたいことはいろいろあります(;・∀・) ∫x/(x+2)^2dx があったとしたらx+2をtに置き換えますよね? そうしたらdxをdtに変換するじゃないですか? その変換の仕方がいまいちわかりません>< そもそもdxとはどういう意味かさえ危ないです>< 上の式を計算すると∫t-2/t^2dtになり ∫(1/t-2/t^2)dtになるそうです。 そしたら logltl+2/t+cになると書いてあるのですが、2/t^2を積分したら 6/t^3に自分が積分したらなってしまいました;; どうやったら2/tになるのでしょうか>< あとはtをXに変換して答えになるので問題ないです。

その他の回答 (2)

  • 回答No.3

すみません y のとりうる値の範囲は、 1<=y<=e^2 です。 この、 e^2 を忘れていたのではないでしょうか。 グラフを描いて、確かめて下さい。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • f272
  • ベストアンサー率45% (5148/11402)

> ∫(0→2)2πxe^xdx=2π(e^+1)になる 計算を間違っているだけです。

共感・感謝の気持ちを伝えよう!

質問者からの補足

すみません、2π(e^2+1)でした。けど、何回やっても上記の答えにしかならないです泣

関連するQ&A

  • 置換積分

    ∫1/(2e^x+1)dxを t=2e^x+1として置換し積分すると log|2e^x/(2e^x+1)|となると思いますが 回答はlog|e^x/(2e^x+1)| 答えを微分すると どちらも被積分関数に戻ると思います 置換の仕方に数学的に 何か重要なミスあるのでしょうか? それ違うならこの方法のダメところ教えてください 多分バカな質問だと思いますが 教えてください

  • 積分の問題です。

    これらの問題を置換積分で解く問題です。わからないので、よろしくお願いします。 (1)∫√(1-x^2)/xdx  t=√(1-x^2)と置いて解くようです。 (2)∫x*√(x+3)dx (3)∫cos^2(x)dx (4)∫1/(&#8731;(x)+1)dx よろしくお願いします

  • 数3の不定積分の問題です

    ∫xe^x^2 dx を置換積分法で解く問題です。 この答えが1/2e^x^2+Cとなる過程を教えてください。 お願いします。

  • 積分問題

    ∫tan^(-1)xdxを積分せよ。 tanxの逆関数? なんかヒントでもあればお願い致します。

  • 数3の置換積分を教えてください。

    t=√(x^2+4)など、√の中に2乗が含まれる式を置換したとき、 ルートを外すとt^2=x^2+4などとなりますが、これをdx ⇒dtに変えるとき 2x dx= 2t dtになる理由が分かりません。 このように変形できる理由を教えてください。 ちなみに、 二乗式が含まれない、t=√(4x+3)などが dx⇒dtに変えるときは、x=(t^2-3)/4から、合成関数の微分よりdx = {(t^2-3)/4}' dtとなり dx = t/2 dtになるのは分かります。

  • 定積分

    ∫[1→2](sinπx)^2dx この問題なんですが、置換積分を用いて t=πxとおいて dx=dt/π tの範囲は[π→2π] ∴∫[π→2π](1/π)(sint)^2dt =(1/π)∫[π→2π](sint)^2dt =(1/π)[(1/3cost)(sint)^3][π→2π] =0 ってなったんですが答えは1/2でした。 どうすればいいでしょうか?

  • eの積分

    ∫e^(x^2) dxの積分はどうしたらできるのでしょう?xe^(x^2)なら u = x^2 の置換できるんですが、この場合eの前にxがないため行き詰ってしまいました。どなたか教えてください。

  • 置換積分の問題です

    置換積分の問題です ∫2x/(x^4-2x^2+2)dx(積分範囲1~2) どの部分を置き換えればよいのかもわかりません。 答えはtan-1(3)です(逆正接です) どうかよろしくお願いします

  • 置換積分法について

    たとえば, ∫(x+1)√(2x+3)dx を計算する場合, t=√(2x+3)とおき, t^2=2x+3 …(*) x=(t^2-3)/2 から, dx/dt=t ∴dx=tdt が導かれ, 置換積分を行うのが高校数学の教科書通りだと思うのですが, (*)からいきなり, 2tdt=2dx とやってよいのでしょうか? つまり, f(t)=g(x) の状態から,xがtの関数であることを利用して両辺tで微分して, f'(t)=g'(x)・dx/dt となり, f'(t)dt=g'(x)dx としてよいのでしょうか?

  • 置換積文の添削お願いします

    置換積文を用いて求めよ (1)∫3/2→2 (2x-3)^3dx 答え 1/8 (2)∫0→1 √4-3xdx  答え -14/9 (3)∫0→π/3 sin(1/2x-π/6)dx  答え -2-√3 (4)∫-2/3→0 e^3x+1dx 答え e/3-1/3e (5)∫0→2 1/(2x+1)dx 答え 1/2log5