• ベストアンサー
  • 困ってます

数II図形と方程式の単元の問題解説

X^2 + 2y^2 = 1 の範囲を満すとき、x+y^2の最大値、最小値を求める問題において、x+y^2= tとおいて、x^2+2y^2=1に代入してxの二次方程式にする。そこで、判別式から実数解を求めるための条件からtの範囲を求めると最大値は出ます。図形的に見れば楕円と放物線の交点になるので、判別式で最大値、最小値が求められると思うのですが、なぜ判別式からは最小値が出ないのか、解説をお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数474
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • bran111
  • ベストアンサー率49% (510/1034)

>判別式で最大値、最小値が求められると思うのですが、なぜ判別式からは最小値が出ないのか、 判別式は変数が実数であるための条件です。変域が無制限(-∞<x<∞)の場合は判別式が唯一の条件になるでしょうが変域に制限がある場合はこれを考慮しなければなりません。 この問題では変数xの変域は -1≦x≦1               (1) です。したがって z=x+y^2=x+(1-x^2)/2=-x^2/2+x+1/2=1-(x-1)^2/2 の変化を(1)の範囲で考える必要があります。グラフを書いてみれば明らかなように x=-1で最小、最小値z=-1 x=1で最大、 最大値z=1 x=1のとき頂点となり、入魂条件すなわち判別式から得られる制限と重なります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。参考にして、検討してみます。また、よろしくお願いします。

関連するQ&A

  • 二次方程式

    k>1のとき、 次の二次方程式の実数解の個数を求めよ。 1) x^2+2x+k=0 2)x^2-(k+1)x+1=0 判別式がどういう条件の時で 求めるんですか? 解き方教えてください!

  • 方程式

    xの方程式{(x^2)ー1} {(x^2)+ax+4}=0が相異なる3つの実数解をもつとき実数aの値を求める問題で {(x^2)ー1}=0を(1) {(x^2)+ax+4}=0を(2)とすると (1)は X^2=1から x=±1ということはわかります これを(2)に代入するとa=5,-5 (2) は判別式が使えそうなので 判別式をつかうと D=(a^2)-16=0になりました a=±4 また(2)に代入すると x=±2になります ここまでしかわかりません

  • 図形

    xy平面上に2つの放物線C1:y=-2x^2, C2:y=x^2-x+1がある。 C1上の点P(p,-2p^2)、C2上の点Q(q,q^2-q+1)の対して、線分PQの中点Rの存在する範囲を図示せよ。 中点Rを(X.Y)とすると、X=(p+q)/2…(1) Y=(-2p^2+q^2-q+1)/2…(2) これらを満たす実数p,qが存在すればよいので、(1)より、p=2x-q これを(2)に代入して、tに関する2次関数とみて(判別式)≧0より、 範囲はy≦6x^2-2x+1/2 あってますか?

  • 数I方程式と不等式の問題

    【問題】 2つの二次方程式 x^2+kx+2=0・・・(1) x^2+2x+k=0・・・(2) が共通の実数解をもつように定数kの値を定めよ 【解答】 (1)&#65293;(2)より、 (k&#65293;2)x+2&#65293;k=0 (k&#65293;2)(x&#65293;1)=0 ∴k=2またはx=1 (i)k=2のとき、(1)、(2)はともにx^2+2x+2=0となるが、判別式D/4=1-2=-1<0より、実数解をもたない (ii)x=1のとき、これが(1)、(2)の解になる条件は、 3+k=0よりk=&#65293;3 以上より、求めるkの値はk=&#65293;3である ↑問題集の解答はこのようにになっています ちなみに私は (1)+(2)で2x^2+(2+k)x+2+k=0 この判別式D=(2+k)^2&#65293;8(2+k)         =(k+2)(k&#65293;6) と、(1)&#65293;(2)ではなく(1)+(2)をしてしまいました。 なぜ足すとどこがどういけないのか分からないのですが、説明できる方がいたらお願いします…

  • 最大値最小値

    実数a,b,c,dについて、 a^2+b^2+c^2+d^2=1・・・(1) a+b+c+d=1・・・・(2) が成り立つとき、abの値の最大値最小値を求めよ。 次のように考えましたが、自信がありません。 よろしくお願いします。 a+b=s, ab=t とおく。 a,bを解とする方程式、x^2-sx+b=0 が実数解を持つから 判別式から、t=<s^2/4 ・・・(3) また(1)と(2)から、c+d=1-s、cd=s^2-s-t/2 c,dを解とする方程式、x^2-(1-s)x+(s^2-s-t/2)=0 が実数解を持つから 判別式から、t>=s^2-2s-1・・・(4) (3)(4)を満たすtの範囲から、最小値はs=1のときで、-2,最大値は(3)と(4)の交点から s=(4+2√7)/3のときで、(16+4√7)/9 何か条件を落としているような気がします。よろしくお願いします。

  • 二次方程式 共通解の問題

    2つの二次方程式、x^2+2mx+10=0、x^2+5x+4m=0がただひとつの共通な実数解をもつとき、定数mの値とその共通解を求めよ。 共通解をαとおいて、αと定数mの連立方程式を解いて出た答えの、m=5/2、α=2をなぜそのまま答えとしてはいけないのか、その理由を教えてください。 答えはmが&#65293;7/2、αが2。 m=5/2を代入したら判別式が<0になるからとかそういうことは聞いてません。 ちゃんとした理由がほしいので詳しい回答お願いします。

  • 数1・A 条件つき最大最小問題

    こんばんは、過去に昭和薬大で出題された問題だそうですが、 Q.  x二乗+y二乗=1のとき  3x+4yの最大値と最小値を求めよ。 という問題で、一応定石どおりに解けば (3x+4y=kなどと置き、文字を消去&代入後  判別式によって最大最小を求める) 最大値=5、最小値=-5 になることは理解できたんですが、疑問が2つあってどうも 納得できません。 1つは、問題の式を見て直感的に、例えば x=1、y=1でも条件は成り立ち、それを代入すると 3x+4y=7になりそうじゃないですか? この値が求めた最大値=5よりも大きいので、一体どうなっているのか ????というもの。 もう1つは、この問題はある問題集に転載されているもので、出題時 のママかどうかは分からないのですが、条件の中に 「xとyはそれぞれ実数」といった文が含まれていないことです。  ↑この条件が書いてなかったら判別式が使えないじゃないですか?? でも実際には判別式を使って解く方法しか参考書には書いてなくって、 それで解くとちゃんと答えが出ます。 ?????これは「xとyを実数とする、と仮定して」解くという ことなんでしょうか??? 不器用な質問で申し訳ありません。 頭こんがらがりそうです、よろしくお願いします。

  • 数I 二次方程式の範囲 訂正

    もう一度解きなおしてみました。 「方程式x&#178;&#65293;2ax+2a&#178;&#65293;5が1より大きい相異なる2個の実数解をもつような定数aの値の範囲を求めよ。」 自分の回答▽ f(x)=x&#178;&#65293;2ax+2a&#178;&#65293;5とするとf(x)=(x&#65293;a)&#178;+a&#178;&#65293;5 二次方程式f(x)=0が1より大きい相異なる2個の実数解をもつための条件は放物線y=f(x)が1より大きいx軸の正の部分と異なる2点で交わることである。これは次の(1)~(3)が同時に成り立つことと同値である。 (1)f(x)=0の判別式をDとするとD/4=a&#178;&#65293;(&#65293;5)=a&#178;+5>0 これを解いてa<&#65293;√5、√5<a…(1) (2)放物線y=f(x)の軸は直線x=aなので、この軸は1より大きいからa>1…(2) (3)f(x)>0から1&#65293;2a+2a&#178;&#65293;5>0よってa>2、a>5…(3) (1)(2)(3)の共通範囲を求めてa>5 ,, となりました。合ってますか? それと、この放物線のグラフを書く場合はy軸は省略してもいいのでしょうか。

  • 解の存在する範囲

    ///問題/// xの2次方程式 x^2+2ax+4a^2+2a=0 (aは実数の定数)がある。 この方程式の実数解のとり得る値の範囲を求めよ。 ///解答/// この方程式の実数解をαとすると、代入して α^2+2aα+4a^2+2a=0 aについて整理すると 4a^2+2(α+1)a+α^2=0 求めるものは、この方程式を満たす実数解aが存在するような実数αの条件である。 よって、aの方程式と考えて判別式をDとすると D≧0 D/4=(α+1)^2-4α=-3α^2+2α+1であるから -3α^2+2α+1≧0より 3α^2-2α-1≦0 (3α+1)(α-1)≦0をといて -1/3≦α≦1 したがって、実数解の存在する範囲は-1/3≦x≦1 なんでaについて整理するんでしょうか? xについてじゃだめなんですか? あと問題文の >この方程式の実数解のとり得る~ のあたりもよくわからなくなってきました。 実数解ってグラフにしたときにx軸と放物線がくっつくところと考えてたんですけど違うんでしょうか…?

  • 軌跡

    実数a,bがa ^2+b ^2+2a+2b-2=0を満たしながら変化するとき、(a+b,ab)を座標するとする点P(x,y)は、どのような曲線を描くかその軌跡を求めよ。 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ a ^2+b ^2+2a+2b-2=0‥(1) 題意より、 x=a+b‥(2) y=ab‥(3) (1)より(a+b)^2 -2ab+2(a+b)-2 (2)(3)を代入して x^2 -2y+2x-2=0 ∴y=1/2x^2 ++x-1‥(4) (2)(3)よりa,bを二解にもつ二次方程式は t^2 -(a+b)t+ab=0 つまり t^2 -xt+y=0‥(5) a,bは実数であるから、tの二次方程式(5)は実数解を持たなければならない よって判別式をDとして D=x^2 -4y≧0‥(6) (4)を(6)に代入して x^2 +4x-4≦0 2-2√2≦x≦-2+2√2 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ この問題で a,bを二解にもつ二次方程式はt^2 -(a+b)t+ab=0 t^2 -xt+y=0‥(5) a,bは実数であるから、tの二次方程式(5)は実数解を持たなければならない よって判別式をDとして D=x^2 -4y≧0‥(6) の部分がよくわかりません。(5)は二つの実数解をもって、判別式DはD>0ではないのですか。