• 締切済み
  • すぐに回答を!

置換積分

置換積分で dt/dx=sinxとかなった時、 dx=dt/sinxと出来るのでしょうか? こういうときはsinx≠0を確認しないと出来ないのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数245
  • ありがとう数0

みんなの回答

  • 回答No.2

置換積分で使える関数というのは、「積分範囲の中で」 入力に対して出力が「一方向に」「滑らかに」変化しないと だめなんですよ。質問だと ∫f(t)dt があって t(x) = -cosx という話なんでしょうか? とすると dt(x)/dx = sinx だから、微分の符号が変化しない (0, π)とか(-π, 0) などの範囲で置換積分可能です。 だから、積分範囲を限定しない不定積分だったらこういう置換積分は不可能です。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 積分 証明 問題

    積分 証明 問題 ∫[0~π](x・sinx)dxを求めよ。 I=∫[0~π](x・sinx)dxとおく。 x=π-tとおくと、dx/dt=-1、積分範囲はπ~0 I=∫[π~0](π-t)・sin(π-t)(-dt) =∫[0~π](π-t)・sin(π-t)dt =∫[0~π](π-t)・(sint)dt 2I=∫[0~π](x・sinx)dx+∫[0~π](π-x)・(sinx)dt  =∫[0~π]πsinxdx  =2π I=π 一点分からない点があります。 ∫[0~π](π-t)・(sint)dt=∫[0~π](π-x)・(sinx)dt について。単純にtをxに置き換えただけだと思いますが、 x=π-tと置換しているのに、t=xと同じ変数を使って再度 置換して良いのでしょうか? 以上、ご回答よろしくお願い致します。

  • 置換積分の問題なんですが・・・

    置換積分の問題で、わからないものがあります。 詳しく教えてください。 ∫1/(1+sinx*cosx)dx よろしくお願いします!

  • 自分の置換積分の間違いを教えて下さい

    置換積分で遊んでいる内に、置換積分で積分した時と通常の方法で積分した時に答えが異なるケースがありました。 こんな事はありえないと思うので、自分の考えが間違っていると思うのですが、どこが間違っているのか分かりません。 済みませんが、皆さんのお知恵をお貸しください。 問題のケースはx^4です(置換積分する必要性は全くありませんが、思考実験として)。 ・通常の積分 ∫(x^4)dx=(1/5)*(x^5)+C ・置換積分の場合 t=x^2とする。 dt/dx=2x dx=(1/2x)dt ∫(x^4)dx =∫t^2*(1/2x)dt =(1/3)t^3*(1/2x)+C =(x^2)^3/6x+C =(1/6)*x^5+C 係数が、通常の積分の場合は1/5に、置換積分の場合は1/6になってしまいました。 どこが間違っているのでしょうか?

  • 回答No.1
noname#201346

置換積分というのは変数変換して積分の計算を実行することです。 ∫[u→v]f(t)dt=∫[a→b]f(φ(x))φ'(x)dx a<x<bなる任意のxについてφ'(x)≠0でなければそもそも変数変換ができません。 お尋ねの例ではφ(x)=-cosxですが、(d/dx)cosx=0となるxがa<x<bの範囲にあってはマズイのです。 置換積分する条件をみたすような変数変換φが見つかったらもうφ'(x)は0にならないので0除算を気にする必要はありません。変数変換φが見つかったのにφ'(x)が0になるか調べるというのは二度手間で無意味です。 φ'(x)が0になるかどうかというのはdx=dt/sinxとしたいときに確認するのではなく、φを決めるときに確認するのです。 変数変換できる条件を教科書でしっかり理解してください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 置換積分の公式

    置換積分について (1)∫f(x)dx=∫f(g(t))g‘(t)dtただしx=g(t) (2)∫f(g(x))g‘(x)dx=∫f(t)dtただしg(x)=t (1)(2)はどのように使い分けるのでしょうか? 教科書や問題集をこなしてもいまいちわかりません。

  • 置換積分の問題

    √x/(1+√x)を置換積分で解こうと思うのですが、 √x=tとおいて x=t^2 dx=2tdt 与式=∫t/(1+t)*2tdt=2∫t^2/(1+t)dt ここから先はどのように解けば良いのでしょうか?

  • 置換積分における置換演算について

    f(x)に対する積分式について、計算のため、 t^2 = x-5 とおく変数の置換式を立てました。 この時、両辺をtで微分すると、 2t = dx / dt → 2t・dt = dx という変換式ができます。 一方、両辺をxで微分すると、 dt^2 / dx = 1 → dt^2 = dx という変換式ができます。 ここで、dt^2 = t・dtとみなして t・dt = dx という変換式として使っては「いけない」明確な説明は、どのようなものになるでしょうか? (t^2という文字を更に別の文字に置換する必要がありますが、高校の数学教科書ではこのあたりが明確に示されていないようです。) (置換積分の変換式の説明の際、「dx→dt」の置換方法は、合成微分の絡みから、「あたかも分数の掛け算をするように」求められると解説されることがあるようですが、その説明ではこの部分の説明がうまくできません。) よろしくおねがいいたします。

  • 置換積分法

    ∫x(3x-2)^3 dx を(t=3x-2)の置換により、この不定積分を求めます。 x=(1/3)t + (2/3)であるから dx/dt=1/3 それで、 ∫x(3x-2)^3 dx=∫(1/3)(t+2)t^3×(1/3)dt この式変形が分かりません・・・。 「∫f(x)dx=∫f(g(t))g'(t)dt [x=g(t)] の公式を使ってるのかなぁ・・・とも思いつつうえのようには出来ません。 ちなみにdx/dtっていうのはdxをdtで微分しますって意味でしたよね・・・? このdってのは「微分します」ってことでしょうか・・・? いつもあまり意味なく形式的に書いてしまっていたので・・・ おねがいします。

  • 数III 定積分の問題

    以下の定積分の問題が上手く問けません。 ∫{0→π/2}√(1+sinx)dx というものなのですが、 1+sinx=tとおいて置換積分をすると dx=dt/cosx となって、tとxが一緒に出てきてしまいってどうしたら良いか分からず、sinx=tとおいても同じような結果になってしまいました。 π/2-x=tとおいてもsinがcosに入れ替わっただけになってしまい、煮詰まってしまいました。 ヒントや考え方の指針でも良いので教えて頂けると嬉しいです。

  • 置換積分法について

    今置換積分を一人寂しく学んでいる者です(´・ω・`) 聞きたいことはいろいろあります(;・∀・) ∫x/(x+2)^2dx があったとしたらx+2をtに置き換えますよね? そうしたらdxをdtに変換するじゃないですか? その変換の仕方がいまいちわかりません>< そもそもdxとはどういう意味かさえ危ないです>< 上の式を計算すると∫t-2/t^2dtになり ∫(1/t-2/t^2)dtになるそうです。 そしたら logltl+2/t+cになると書いてあるのですが、2/t^2を積分したら 6/t^3に自分が積分したらなってしまいました;; どうやったら2/tになるのでしょうか>< あとはtをXに変換して答えになるので問題ないです。

  • 置換積分法について

    たとえば, ∫(x+1)√(2x+3)dx を計算する場合, t=√(2x+3)とおき, t^2=2x+3 …(*) x=(t^2-3)/2 から, dx/dt=t ∴dx=tdt が導かれ, 置換積分を行うのが高校数学の教科書通りだと思うのですが, (*)からいきなり, 2tdt=2dx とやってよいのでしょうか? つまり, f(t)=g(x) の状態から,xがtの関数であることを利用して両辺tで微分して, f'(t)=g'(x)・dx/dt となり, f'(t)dt=g'(x)dx としてよいのでしょうか?

  • 積分がわかりません

    いくつかわからないので教えていただきたいです。∫は省略します。 まずlog(1+√x)dxですが、t=√xと置換してdx=2tdtとなり 2tlog(1+t)dtとなります。しかしここからのやり方がわかりません。 次にcos^3xsin^2xdxですが、部分積分を使ってやってみたのですがどうもうまくいきません・・・しかし部分積分を使うのは間違いなさそうなんです。 次に(1/(x^3-x))dxですが、この式は1/x(1-x)(1+x)に変形できます。 分母が2つの掛け算ならば部分分数にできるのですが3つの掛け算なのでどうしたらいいのかわかりません。 次に(x/(x^3+1))dxですが、この式をx/(x+1)(x^2-x+1)と変形したあとのやり方がわかりません。 最後に、これが一番聞きたいことなんですが (1/cosx)dxの積分です。 分子分母にcosxを掛けてcosx/cos^2xとします。 sinx=tとおくと、dx=dt/cosxとなり、最初の式はdt/(1-t^2)になります。 部分分数にして1/2∫(1/(1+t)+1/(1-t))dtになります。 よって1/2(log|1+t|-log|1-t|)=1/2log|(1+sinx)/(1-sinx)|になりますよね?? でも、解答にはlog|(1+sinx)/cosx|って書いてあるんです。 どこが間違ってるのかわかりません。 以上長いですが教えていただけたら幸いです。

  • 「高校数学」置換積分法の公式について

    x=g(t)のときの置換積分法の公式∫f(x)dx=∫f(g(t))g'(t)dt についてなんですが、 dx/dt=g'(t)だから dx=g'(t)dtよりこれを左辺のdxに代入して 機械的に右辺の式になると考えるのは間違いでしょうか? 教科書では y=(左辺)として dy/dt=(dy/dx)(dx/dt)=f(g(t))g'(t)だから両辺tで積分して 右辺を作ってましたが・・・

  • 置換積分法についてです。

    使いわけを教えてください。今自分が習っている内では置換積分法は2種類あります。 ひとつは、∫f(x)dx=∫f(g(t))g'(t)dt もうひとつは、∫f(g(x))g'(x)dx=∫f(u)du です。 このふたつをどう使いわけたらいいかがわかりません。どんな時に前者、どんな時に後者、という感じではっきりできませんか?ご回答よろしくお願いします。