• 締切済み

線形代数の行列の問題です。(その2)

べき零行列A(A^m = O)に対して exp(A) = E + A + {1/(2!)}A^2 + ・・・+{1/(m-1)!}A^(m-1) と定義する。 A,Bがべき零かつ可換ならば exp(A+B) = exp(A) ・ exp(B) を証明せよ。 という問題について質問があります。 この問題の解説にて exp(A) ・ exp(B) = [Σ[p=0,r-1]{1/(p!)}A^p][Σ[q=0,s-1]{1/(q!)}B^q] = Σ[t=0,m-1]{1/(t!)}[Σ[p+q=t]{(t!)/(p!q!)}(A^p)(B^q)] (ただしm=r+s-1) とありますが、何故 m = r+s-1 とおけるのか、そして、何故 m = r+s-1 と置くという発想に至るのかが分かりません。

みんなの回答

  • uyama33
  • ベストアンサー率30% (137/450)
回答No.2

[Σ[p=0,r-1]{1/(p!)}A^p][Σ[q=0,s-1]{1/(q!)}B^q] この式は、A^r=0 , B^s=0 を意味している。 そこで、(A+B)^m=0 となる最小のmを見つけると、 m=r+s-1 になる。

noname#201272
noname#201272
回答No.1

関連するQ&A

  • 線形代数の行列の質問です。

    べき零行列A(A^n = O)に対して exp(A) = E + A + {1/(2!)}A^2 + ・・・+{1/(m-1)!}A^(m-1) と定義する。 A,Bがべき零かつ可換ならば exp(A+B) = exp(A) ・ exp(B) を証明せよ。 という問題について質問があります。 この問題の解説にて exp(A) ・ exp(B) = [Σ[p=0,r-1]{1/(p!)}A^p][Σ[q=0,s-1]{1/(q!)}B^q]・・・(1) = Σ[t=0,m-1]{1/(t!)}[Σ[p+q=t]{(t!)/(p!q!)}(A^p)(B^q)]・・・(2) (ただしm=r+s-1) とありますが、なぜ(1)を(2)に変形することが出来るのか理解できません。 そもそも、 Σ[p+q=t] の意味がわかりません。

  • 線形代数 正定値行列について

    A=PP^t , B=QQ^t というn×n行列があります。 P^t , Q^t はそれぞれPとQの転置行列を表しています。P,Qともにn×nの正方行列です。 また行列式|A|と|B|は共に正です。 この時、行列ABというのは正定値行列になるのでしょうか?

  • 線形代数の問題が解りません。

    線形代数の問題が解りません。 線形代数の問題が解りません。 宜しかったら教えてください。 1.次のシステムを考える x(t)= A x(t) + b u(t)   ・・・I xに上点あり A=[1 0 0 0;0 -1 0 1;0 0 -1 0;2 0 -1 -1] b=[-1 1 0 -1]の転置 y(t)=c x(t)         ・・・II             c=[1 0 1 0] 1-1. このシステムの可観測行列をMとするとき、rank=2を示せ これは可観測行列M=[c cA cA^2 cA^3]の転置 となるので、行基本変形で M=[c cA cA^2 cA^3] =[1 0 1 0;1 0 -1 0;1 0 1 0;1 0 -1 0] ・ ・ ・ =[1 0 0 0;0 0 1 0;0 0 0 0;0 0 0 0] と変形でき、rankM=2となり、ここまでは何とかわかりました。 1-2.KerMの基底ベクトルω3、ω4を求めよ 1-3.ベクトルω1、ω2をω1、ω2、ω3、ω4がR^4の基底ベクトルとなるように定めよ 1-4.T=[ω1 ω2 ω3 ω4]とおく。状態変換x(t)=Tx(t) (右辺のxの上には~あり) によって、状態方程式Iと出力方程式IIはそれぞれどのような式へと変換されるか 1-5.このシステムの伝達関数を求めよ 1-6.システム(A,b,c)の極、および、伝達関数G(s)の極を求めよ 2.Mをk*l行列とする。 2-1 Mの像Im M がベクトル空間R^kの部分空間となることを示せ 2-2 Mの核Ker M がベクトル空間R^lの部分空間となることを示せ 1-5、6については 前の定義に システム(A,B,C)の伝達関数G(s)は G(s)=C(sI-A)^(-1)B= C adj(sI-A)B/det(sI-A) と表せるから s=pが伝達関数G(s)の極なら、s=pがシステム(A,B,C)の極である、 とあるのですが、よく意味が解りませんでした。関係がなかったらすみません。 どなたかわかる方がいましたら、一問でも構いませんので 具体的な解き方も含めて教えてください。 宜しくお願いします。

  • 線形代数の問題なんですが

    A=(1 0 1)    (0 1 0)    (1 0 1) と3次元空間上のベクトル r1=(1/√2)    (0)    (1/√2) があります。 行列Aの固有ベクトルq1,q2,q3を求め、それらを正規化したベクトルp1,p2,p3を基底とする座標系でr1を求めよ、という問題が解けません。 ここで行列Aの固有値は0、1、2で固有ベクトルは   (1) q1=(0)   (-1)    (0) q2=(0)   (0)   (1) q3=(0)    (1) です。 分かりづらくてすいませんがどうか解き方を教えてください。

  • 線形代数 行列式について

    簡単そうな問題ですが、なかなか解けなくて困っています;; 行列A,Bをそれぞれn、m次の正方行列とするとき Xという行列を X=|OA| で表すとき(つまりxはm+n次行列でOの部分は要素が0) |BO| 「det(X) = (-1)^nm * det(A)*det(B)」となることについてです。 基本変形等で出来る問題でしょうか? それともsgnなどを使ってこまごま解く方法なのでしょうか・・>< よろしくおねがいします。

  • 線形代数の行列に関する問題です。

    線形代数の行列に関する問題です。     {{0 a 3}, 行列 A = {0 0 4},  (a は定数)      {3 4 0}} この行列は5を固有値に持つとする。 1.定数a の値を求めよ。 2.A の固有値を全て求め、A の各固有空間λ に対する固有空間        Wλ = {x ∈ R^3 : Ax = λx}   の規定と次元dim Wλを求めよ。 3.B = P^{-1}AP が対角行列となるような3次正則行列Pおよび対角行列Bを1組求めよ。 受験勉強が間に合っておらずあたふたしています。 基礎は押さえているので、答えの導出方法、考え方をご教授していただけると助かります。 どうかよろしくお願い致します。

  • 線型代数

    大学の講義で出題された線型代数に関する問題についての質問です。 <問題> ※Iは単位行列 Aをn次正方実行列とする。tI-Aが正則行列となるt∈Rに対して、A(t)=(tI-A)^-1とおく。 [1] A(t)が存在しないt∈Rは高々n個であることを示せ。 [2] また、それら以外のt∈RについてA(t)は連続関数であることを示せ。 [3] さらに、A(s)-A(t)=(t-s)A(t)A(s)を示せ。 [1]については「tI-Aの逆行列が存在しないのはn個のt(実数)のときだけであることを証明せよ」という題意は分かりましたが、その手順がまったく思い浮かびません。 [2]については「連続関数」の定義すらよく分かりませんので、無論証明の手順は思いつきません。 [3]についても題意は理解したつもりですが、証明手順が分かりません。 全くの初心者にも分かるようなきめ細やかな証明手順の説明をお願いします。

  • 線形代数で分からない問題が、、、

    A,Bを対角化可能なn次行列とする。このときA,Bのすべての固有空間が等しいならばA,Bが可換であることを示せ。 という問題があるのですが、問題自体がよくわかりません。予測でも構わないので何かわかりましたらぜひ教えて下さい!

  • 線形代数の問題です。

    線形代数の問題です。 M∈M_2,2(R)、N∈M_3,3(R)に対して、 線形写像f_M,N:M_2,3(R)→M_2,3(R)を f_M,N(X) = MX -XN と定義する。 【問題】 A= 2 2 -4 8 B= -1 1 -1 -6 4 1 0 0 2 とするとき、f_A,BのJordan標準形を求めよ。 【自分の解答】 線形変換の基底を<E_11,E_12,E_13,E_21,E_22_E_23>を定めて 変換の表現行列を求めようとしました。 しかし、6×6行の行列になって計算量が多い上、 ブロック対角化されたJordan標準形になりませんでした。 この方針で合っているのでしょうか?

  • 行列の一次変換の問題です。

    Aは逆行列をもつ行列とし、Aで表される一次変換によって、4点P,Q,R,Sがそれぞれ点P’,Q’,R’,S’に移るものとするとき、PQ∥RSならば、P’Q’∥R’S’であることを証明せよ。という問題の解答で、 「Aは逆行列をもつから、4点P,Q,R,Sが一致しないとき、4点P’,Q’,R’,S’は一致しない」 とありますがなぜそのような事がいえるのでしょうか?どなたか分かりやすく教えていただけないでしょうか?