締切済み 大学入試の数学の記述方法について 2014/07/23 12:56 ある数aについて、 a∈R (aは実数) a∈Z (aは整数) a∈N (aは自然数) a∈Q (aは有理数) G.C.M. (最大公約数) L.C.M.(最小公倍数) 等の記号は使っていいのでしょうか みんなの回答 (2) 専門家の回答 みんなの回答 Tacosan ベストアンサー率23% (3656/15482) 2014/07/25 14:49 回答No.2 基本的には ・問題に書いてある文字は断りなく使っていい ・問題に書いていない文字は断ってから使う と思えばよい. 通報する ありがとう 0 広告を見て他の回答を表示する(1) trytobe ベストアンサー率36% (3457/9591) 2014/07/23 13:18 回答No.1 左側の記号を書いても、結局「群を表す英字の意味」を説明するために、右側の括弧内のような日本語説明を書くことになるので、 私は、右側の括弧内の日本語表記で書きます。 QED も個人的に「間違っていたら恥ずかしい」ので、右下に「以上」とか「ここまで」とか画数の少ないもので済ませていました。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 除法 考え方について教えてください。 例1 ある整数で45を割ると3余り、71を割ると5余る。ある整数の求めかたで、この問題を解く方法は最大公約数を利用します 例2 3で割っても5で割っても6で割っても2余る2桁の自然数のうち最大のものは? この問題の解き方は最小公倍数を利用。 〇問題によってどんな時に最大公約数、最小公倍数を利用するのか分かりません。 例2で聞きたいのですが、 求める自然数をxとし、3で割った商をa,5で割った商をb、6で割った商をcとすると x-2=3a x-2=5b x-2=6c 最小公倍数から30となりました。 この後、どのように考えるのか分かりません。 数学 最大公約数が45、最小公倍数が3150となるような2つの自然数を求めよ 最大公約数が45だから求める二つの自然数は互いに素な二つの自然数m、n(m<n)を用いて 45m、45nと表せる 最大公約数が3150より 3150=45mn←これがわかりません なんで3150=45mnなんですか??? 息子の数学です。 3でわると2余り、5でわると3余り、7でわると4余る3桁の整数は何個あり、最も大きいものは~である。 2つの2桁の自然数があり、その最大公約数が6で最小公倍数が、270である。自然数の組みは? 2つの2桁の自然数があり、最大公約数が8で和が120である2つの自然数の組みを全て求めよ。 なんですが、簡単な出しかたわかる方、教えて下さい。 高校入試の数学の問題で公約数・公倍数の問題です 二桁の整数が2つあってその最大公約数が2×2×3、最小公倍数が2×2×2×2×3×5である。この二つの整数を求めよ。 です。答えは48. 60ですが、答えしか書いてなく、さっぱりわかりません。よろしくお願いします 数学IIの問題 次の各組の整式の最大公約数と最小公倍数を求めよ。 3a^2b^2c^3、-9a^3b^2c^3、15a^2bc^4 僕は3a^2bc^3(b)、3a^2bc^3(-3ab)、3a^2bc^3(5c)というふうに分解して 求めた答えは最大公約数3a^2bc^3、最小公倍数-45a^3b^3c^4となりました。 しかし模範解答は最大公約数a^2bc^3、最小公倍数a^3b^2c^4でした。 どうすればこのような答えにたどり着けるかを教えてください。 最大公約数と最小公倍数 この問題のことが分かりません教えてください(>_<) 44、78、112のどの数も自然数Aで割ると10余り これは最大公約数で解く 自然数Bを12、18、30のどの数で割っても3余る これは最小公倍数で解く どういう理屈で最大公約数と最小公倍数を使い分けるのですか? 約数・倍数の問題 次の3条件を満たす3個の整数a,b,c(0<a<b<c)の値を求めよ。 (A)a,b,cの最大公約数は6 (B)bとcの最大公約数は24、最小公倍数は144 (C)aとbの最小公倍数は240 という問題の解き方を教えて下さい。 明日テストなので早めに回答してくださると助かります。 最小公倍数 最大公約数 周辺の定理について 自然数a=自然数aと自然数bの最大公約数×整数x 自然数b=自然数aと自然数bの最大公約数×整数y ⇒ 自然数aと自然数bの最小公倍数 =整数x × 整数y × 整数aと整数bの最大公約数 =整数x × 自然数b =整数y × 自然数a という定理の証明をおしえてください うんうん唸って考えてみたのですがどうしてもうまく証明できませんでした 最大公約数と最小公倍数の関係 ある二つの正の整数の最大公約数と最小公倍数をかけたものは、元の二つの数字をかけたものと等しいっていうことは言えますか? つまり、最大公約数をgcd、最小公倍数をlcmとあらわすことにして、 正の整数mとnについて、 gcd(m , n)・lcm(m , n)=m・n は成り立つかどうかを教えてください。 できればその理由(証明)も添えてください。 協力お願いします!! 3つの数と最大公倍数について a<b<cを満たす自然数a,b,cがありa,b,cの最大公約数が12、最小公倍数が216である。このようなa,b,cの組は何組あるか の問題があるのですが、 、 解答には a=12a' b=12b' c=12c'(a',b',c'の最大公約数1) とおけて、 a',b',c'の最小公倍数は、216÷12=18 と出ているんですが なぜ、216÷12という式で最小公倍数が分かるのですか? 理由がいまいち分かりません・・ どうかよろしくお願いします 中三 数学 素因数分解 2つの自然数がある。その最大公約数は13,最小公倍数は273、差は52である。 このとき、二つの自然数を求めよ。 途中もお願いします。 自分の解き方の何が悪いかわからない… こういう問題がありました 「2つの自然数a,b(a<b)について、aとbの最大公約数は6 最小公倍数は216である。このような(a,b)の組は何組あるか」 自分は 二つの整数とその二つの整数の最小公倍数、最大公約数の定理より a×b=6×216 がなりたつ ここで右辺を素数の積の形に直すと a×b=2^4×3^4 よって左辺では2を4個、3を4個供給しなければいけないので 考えられる組み合わせは a b 2^0×3^0 2^4×3^4 : : : : : : 2^4×3^4 2^0×3^0 の25個 ここからa<bの条件に合わないものを除き 答えは11組 と考えたのですが、正解は2組でした ぜんぜん違いました… どこが間違っているのでしょうか おしえてください 整数について。 (1)最大公約数と最小公倍数の和が51であるa,b(a <b)の組は、?組あり、最大のa の値は、?である。 (2)和が546で、最小公倍数が1512である2つの正の整数を求めよ。 この2問にご教授願いたいです。すみません。 小5算数 整数の性質 どの程度まで扱うべきだと思いますか。以下私案: 1 約数と倍数:偶数と奇数,約数と倍数の意味,倍数の見分け方 2 素数と素因数分解:素数,素因数分解 3 最大公約数とその利用:2数及び3数の最大公約数とその利用 4 最小公倍数とその利用:2数及び3数の最小公倍数とその利用 5 2つの整数とその最大公約数・最小公倍数との関係 高校数学 不定方程式(百五減算)について 数学Aの問題で教えて頂きたいことがあります。 フォーカスゴールド(Ⅰ・A)の例題262で 「3で割ると2余り、5で割ると3余り、7で割ると4余る3桁の正の整数のうち、最大のものを求めよ。」 解答(別解)として、「N=15a+35b+21c(a、b、cは整数)という数を考える。」とあり、合同式を用いて方法を使っているのですが、なぜそのような式を立てようと考えるのかがしっくりきません。 確かに3と5の最小公倍数15、5と7の最小公倍数35、3と7の最小公倍数21はわかりますが、N=15a+35b+21cと置くと理由がわかっておりません。 宜しくお願いします。 数学の宿題なんですが、 (1) 2割引の賞品を現金で買うとそこから5%引かれる。2800円のものを買うといくらになるか (2) 900円の賞品を765円で売ると何割引きで売った事になるか (3) 3465と39204の最小公倍数と最大公約数 (4) 3と12と18の最小公倍数と最大公約数 説明と共に答えを教えていただけたら嬉しいです。 小5算数「整数の性質」について。 小学5年の算数で,整数の性質を学びます。そこでは,最大公約数や最小公倍数を求めることも扱います。そこで質問です。 この際,算数の内容に素因数分解を取り入れ,素因数分解を用いて最大公約数や最小公倍数を求めることも扱うべきだと思いますか。 数学Ⅱの最大公約数・最小公倍数 x^3-4x^2+3x 6x^4-15x^3-9x^2 の最大公約数と最小公倍数を求めよ という問題は因数分解した後、どのように最大公約数、最小公倍数を考えたら良いのでしょうか? まずどう考えたら最大公約数がx(x-3)となるのでしょうか? 最小公倍数も x^2(x-1)(x-3)(2x+1) となる理由がわかりません…。 x^2はどう考えたら出てくるのでしょうか? よろしくお願いしますm(__)m 最大公約数と最小公倍数の関係 ある整数と18の最大公約数は9、最小公倍数は54です。ある整数を求めよ。 この問題を小学生に分かりやすくご解説いただけませんでしょうか? 最小公倍数と最大公約数の関係について 最小公倍数と最大公約数の関係について 小学校に通っている妹の宿題を教えていたとき 最小公倍数と最大公約数の問題がありました。 自分は今まで何となく解いていましたが あることに気が付きました a,bがあり この2つの最小公倍数は、a,bそれぞれをa,bの最大公約数で割ったものの積に a,bの最大公約数を掛けたもの どうでしょうか? もしこれが正しい場合(実際に上記の公式はありますか?) 証明はどのようにすればよいのでしょうか? 回答宜しく御願い致します。