- ベストアンサー
高校数学
高校数学 【三角関数】 〈三角方程式の解の個数〉 0≦θ≦πのとき、θの方程式 2sinθcosθ-2(sinθ+cosθ)-k=0の解の個数を、定数kが次の2つの値の場合について調べよ。 k=1,k=-1.9 答え:k=1のとき1個,k=-1.9のとき3個 できるだけ詳しい解説をお願いします 。o@(・_・)@o。
- みんなの回答 (4)
- 専門家の回答
関連するQ&A
- 三角方程式
(1)t=sinθ+cosθとおく。sinθcosθをtを用いて表せ。 (2)0≦θ≦πのとき、t=sinθ+cosθのとりうる値の範囲を求めよ。 (3)0≦θ≦πのとき、θの方程式 2sinθcosθ-2(sinθ+cosθ)-k=0の 解の個数を、定数kが次の3つの値の場合について調べよ。 k=1 k=1-2√2 k=-1.9 【自分の解答】 (1)sinθcosθ=(t^2 -1)/2 (2)-1≦t≦√2 (3)方程式は、tで表すと、 t^2 -2t-1-k=0となる。 y=t^2 -2t-1=kとすると、 y=(t-1)^2 -2 (-1≦t≦√2) y=(t-1)^2 -2 のグラフとy=kの交点の個数を考えると、 k=1のとき、解の個数は1個 k=1-2√2のとき、解の個数は2個 k=-1.9のとき、解の個数は2個 しかし、t=-1.9のとき、解は3個です。答えは どうしてこうなるのか、解説お願いします(>_<)
- ベストアンサー
- 数学・算数
- 高校数学 三角関数
こんにちは。春休み、集中して数学を勉強中の者です。 三角関数の問題で、わからない問題がありました。 ご解説をお願いできたらと思います。 問題1, tan^2θ + M tan^2θ + 1 = 0 の、 θが存在するように、 定数Mの値の範囲を求めよ。 やってみたこと Mについて解き、M=◯◯◯ の二次関数の式にしようとしたのですが Mが変な場所にある為できませんでした。 tan=sin/cos等も用いて書き換えてみましたが、 M=-1/sincos となり、詰まりました。 問題2, 0≦θ<2πのとき、 4sin^2θ - 4cos^2θ-5 +a=0 の、解の個数を、定数aの値によって分類せよ。 やってみたこと 解の個数、と言われて判別式を思いつき、 判別式 16-16(-5+a) つまり 6 >a や a =6 や 6 <a を試そうと思いましたが 見当違いだったようです。 よろしくお願いします。
- ベストアンサー
- 数学・算数
- 三角比の2次方程式の解の個数という問題でわからない問題があるので、教え
三角比の2次方程式の解の個数という問題でわからない問題があるので、教えて下さい。 30°≦Θ≦180°とする。sin^2Θ+cosΘ-a=0・・・? について、 (1) ?が解をもつための定数aの値の範囲を求めよ。 (2) ?が異なる2個の解をもつための定数aの値の範囲を求めよ。 なのですが、 (1)はsin^2を(1-cos^2)にして、aを移行して、 -1≦a≦5/4 になるのはわかったのですが、 (2)の求め方が解説を読んでも理解できません(汗 答えは1/4+√3/2≦a<5/4 になるそうです。 どういう風に解けばよいのかがわかりません。 教えて下さい!!
- ベストアンサー
- 数学・算数
- 三角関数の問題です。
三角関数の問題です。 2次方程式 5x^2-7x+k=0 の2つの解が、sinΘ、cosΘであるとき、 定数k の値と sin^3Θ+cos^3Θの値を求めよ。 です。 「sinΘ+cosΘ=7/5」 「sinΘcosΘ=k/5」 を使って計算するらしいのですが、 この2つの式はどうやって求めたのでしょうか?
- ベストアンサー
- 数学・算数
- 数学 三角関数の応用
以下の問題の解説を教えてください。 恐縮ながら、細かく解説していただけると幸いです。 0≦θ<2πのとき、方程式4sin^2θ-4cosθ-5+a=0の解の個数を、定数aの値によって分類せよ。 宜しくお願い致します。
- ベストアンサー
- 数学・算数
- 三角関数の問題のわからないところですpt2
センターの三角関数の問題です。わからないところ以外の空欄は埋めています。 0≦θ<360°のときy=2sinθcosθ-2sinθ-2cosθ-3とする。 x=sinθ+cosθとすると、y=x^2 -2x - 4とかける。 x=√2sin(θ+45°)であるから、xの値の範囲は-√2≦x≦√2である。 したがって、yはθ=225°のとき最大値2(√2 - 1)をとり、最小値は-5である。 さらにkを定数とし、θの方程式2sinθcosθ-2sinθ-2cosθ-3=kが相異なる3個の解をもつときk=( )である 最後の空欄に関してなのですが、どのような順序で求めれば良いのかわかりません。sinθの値とθの解の個数の関係は理解しているつもりなのですが、今回はsinθではなく√2sin(θ+45°)となっているので混乱しています。よろしくお願いします。
- ベストアンサー
- 数学・算数
- 数IIの三角関数の問題
数IIの三角関数の問題 次の3つの問題が分かりません。 解説をお願いします。 1、関数 y=cos2x-sinx(0≦x<2π) の最大値と最小値を求めよ。 また、与えられた実数aに対して、方程式 cos2x-sinx=a(0≦x<2π)の解の個数を求めよ。 2、45°≦θ≦135°のとき、関数f(θ)=3(sinθ)^2+4√3sinθcosθ-(cosθ)^2の最大値と最小値を求めよ。 3、aを定数とする。xについての方程式 (cosx)^2+2a(sinx)-a-1=0 の 0≦x≦2π における異なる実数解の個数を求めよ。
- ベストアンサー
- 数学・算数
- 三角関数について
kは定数とする。θの方程式 2(√3sinθ-cosθ)+(√3sin2θ+cos2θ)=k(0≦θ≦π) について次の問いに答えよ。 (1)t=√3sinθ-cosθとおくとき、tをrsin(θ+α)の形(r>0、-π<α≦π)に変形せよ。また、tの取りうる値の範囲を求めよ。 (2)(1)のtについてt^2を計算して、 √3sin2θ+cos2θをtの式で表せ。 (3)θの方程式 2(√3sinθ-cosθ)+(√3sin2θ+cos2θ)=k(0≦θ≦π)の解の個数を分類しなさい。 この問題で (1) t=2sin(θ+2/3π) -1≦t≦2 (2)√3sin2θ+cos2θ=-t^2+2 と答えがでて、 (3)y=kとy=-t^2+2t+2が共有点について調べればよい。までわかったんですが、そこからθの個数について分類するまでが分かりません。 解答は k<-1,3<kのとき解θは0個 -1≦k<2のとき解θは1個 k=2,3のとき解θは2個 2<k<3のとき解θは3個 となっていますが、0個の分類はわかるんですが、1~3個までの分類の仕方が分からないので教えてください。
- ベストアンサー
- 数学・算数
- 高校数学(IIB)です。解説お願いします。
xの方程式 √3(sin2x-cosx)-k=cos2x-sinxが0≦x<2πの範囲に異なる4つの解を持つ様なkの値を求めよ。 一応、2sin(2x-π/6)+2sin(x-π/3)=kという様に変形をしてみたのですが、手詰まりです。 解説お願いします。
- ベストアンサー
- 数学・算数