• 締切済み
  • すぐに回答を!

高校 数学IIの問題です

こんばんは。数学の問題で全く手がでなく、困っています 0≦θ≦πのとき、関数 y=sin^2θ+2sinθcosθ+3cos^2θの最大値と最小値を求めよ。 また、その時のθの値をもとめよ。 sin^2θ=の式を代入するのでしょうか… よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数369
  • ありがとう数0

みんなの回答

  • 回答No.1

y=sin^2θ+2sinθcosθ+3cos^2θ=1+2cos^2θ+sin2θ=1+1+cos2θ+sin2θ=2+sin2θ+cos2θ =2+(√2)sin(2θ+π/4) はわかりますか。 sin2θ=2sinθcosθ cos2θ=2cos^2θ sin^2θ+cos^2θ=1 sinθ+cosθ=(√2)sin(θ+π/4) を使っています。 yの最大、最小は各々sin(2θ+π/4)=1,-1のとき 最大値=2+√2 この時2θ+π/4=π/2 故にθ=π/8 最小値=2-√2 この時2θ+π/4=3π/2 故にθ=5π/8

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学II

    関数 y=4cosθ-4sin~2θ+10 (0くθく2π) の最大値と最小値及び θの値は?? ちなみに答えは 最大値14 最小値5 です。 途中式を教えて下さい!

  • (数学II)加法定理の応用

    0≦x<2πのとき、y=cos2x-2sinxの最大値と最小値を求めよ。また、そのときのxの値を求めよ。 という問題なのですが、分からなかったので解答を見てみると、 cos2x=1-2sin(2)xを代入すると、y=-2sin(2)x-2sinx+1 ここで、sinx=tとおくと 0≦x<2πより、《-1≦t≦1》であり y=-2t(2)-2t+1 =-2(t+1/2)(2)+3/2 よって、この関数は 《t=-1/2のとき最大値3/2、t=1のとき最小値-3》 をとる。 sinx=-1/2のとき x=7/6π,11/6π sinx=1のとき x=π/2  よって、この関数はx=7/6π,11/6πのとき最大値3/2をとり、 x=π/2のとき最小値-3をとる。 ーーーーーーーーーーーーーーーーーーーーーー とありました。 二乗の所は(2)、分数は 分子/分母 、 私が分からない箇所は《》 という風に書きました。 何故、0≦x<2πだと-1≦t≦1になるのでしょうか? t=-1/2のとき最大値3/2、t=1のとき最小値-3←この文章も、どこからこんな数字が出てきたのか分かりません。 どなたか教えていただけると嬉しいです。

  • 高校数学(IIB) 関数

    0≦θ<2πのとき、関数y=(1+sinθ) (1+cosθ)について、yの最大値と最小値を求めよ。 またその時のθの値も求めよ。 よろしくお願いします。 最大 3/2+√2 (θ=π/4) 最小 0 (θ=3/2π,π) と出てきましたが間違いだそうです。

  • 三角関数について質問

    こんばんは。 三角関数について質問があります。 0≦α<360°のとき、関数y=cos2θ+2sinθの最大値と最小値を求めよう。 この問題については cosθ=1-2sin^2θを代入し、 =-2(x-(1)/2)^2+3/2 から最大値、最小値を求められます。 上記のようなやり方で三角関数をつかわず y=sinθ+√3cosθ や y=sinθ+cosθ を最大値、最小値をもとめられるでしょうか? (問題集では三角関数を使い解いています) 不可能な場合、どうしてだめかも教えてください。 よろしくお願いします。

  • 三角関数の最大と最小(数学II)

    御世話になっております。 次の問 0≦θ<2πで、関数 y=sin^2θ-cosθの最大と最小を求め、その時のθの値を求めろ。 についてですが、二次関数に置き換えるために、sinやcosを一文字で表す方法を使う事は出来ますか?当方の未熟な考えでは、実際に0から2πの範囲で与式を計算し、yの値を求める方法しか思い付きません。性質を使って、sinかcosのどちらかに統一することが出来るかなぁと思ったのですが… 解き方のヒントだけいただきたいです。宜しくお願い致します。

  • 三角関数 最大値最小値 合成

    関数y=sin2θ+2(sinθ+cosθ)-1 について、θの範囲は0≦θ<2πである。 k=sinθ+cosθと置くとき、yをkの式で表し kの取りうる値の範囲とyの最大値最小値 その時のθの値を求めよ。 途中までは考えれました。 合っているかは分かりませんが y=k2乗+2k-2 この問題教えてください

  • 数学IIの問題わかりません!

    関数 y=2cosθ+kcosθがあり、θ=π/3のときy=2である。ただし、kは定数とする。 (1)kの値を求めよ。 (2)0≦θ≦2/3πとする。x=cosθとおくときxのとりうる範囲を求めよ。 またyをxを用いてあわらせ (3)0≦θ≦2/3πにおける関数yの最大値、最小値を求めよ。 この問題が意味が分からない。。。。 解説付きでおしえてください! よろしくお願いします。

  • 三角関数の問題について

    数学の問題です。解ける方よろしくお願いします f(θ)=sin3θ-cos3θ+3sin2θ-9(sinθ+cosθ) ただし0<=θ<2π (1)t=sinθ+cosθとおくとき,f(θ)をtで表しなさい (2)f(θ)の最大値と最小値、およびそのときのθの値を求めなさい よろしくお願いします・・・!

  • 最大値最小値

    x^2+xy+y^2=3のとき、x^2+y^2+x+yの最大値最小値を求めよ。 つぎのように考えました。 与式を変形して、(x+y/2)^2+(3/4)y^2=3 より、 x+y/2=(√3)cosθ、{(√3)/2}y=sinθ とおき、x=√3cosθ-sinθ、y=2sinθ を代入すると x^2+y^2+x+y=2(sinθ)^2-2√3cosθsinθ+√3cosθ+sinθ+3 となり、ここからこの三角関数の最大最小を考えようとしましたが、このあとどうすれば よいでしょうか。よろしくおねがいします。

  • 数学を教えてください

    関数f(θ)=a(cosθ)^2 +(a-b)(sinθ)(cosθ)-b(sinθ)^2の最大値が3+√7,最小値が3-√7となるように,a,bの値を定めよ