• ベストアンサー

数学 線形写像 全射

superkeroyonの回答

  • ベストアンサー
回答No.2

∀b∈B,∀a∈A such that f(a)=b の意味を考えてみましょう。 Bの元bを任意にとってきます。このbは以下で固定して考えます。 すると、∀a∈A such that f(a)=b から、 Aのどんな元a∈Aをとってきても、f(a)は その固定されたbになります、f(a)=b、.................................(1) という意味になります。つまり、定値写像(一つの値しかとらない写像)を意味してしまうことになります。 しかも、Aが非空なら、Bは一つの元からなる集合であるということも出てきますね。 理由:Bの任意の元b_1,b_2についても、(1)が成立するので、特にAの元aを任意にとってくると、f(a)=b_1,f(a)=b_2 となりますので、b_1=b_2を得ます。すなわち、Bの任意の元は同一であることになり、Bは一つの元からなる集合であることになります。

RY0U
質問者

お礼

ご回答ありがとうございます。 理解できました。 ありがとうございました。

関連するQ&A

  • 全射の定義

    f:A→Aが全射であることの定義ですが 「任意の元a∈Aに対して、a=f(α)を満たす元α∈Aが存在するときfを全射という」 「任意の元a∈Aに対して、A=f(A)が成り立てばfは全射である」 この2つの書き方はどちらも合っているのでしょうか? それとも意味が違ってるのでしょうか?教えてほしいです。よろしくお願いします。

  • 写像に関する問題で単射、全射、全単射を選ぶ問題についての質問です

    大学の問題で、 関数f,g:N→Nを以下のように定義する。 f(n) = 3n, g(n) = [n/3]+1     ※[ ]は床関数を表す fとgの合成gfが満たす性質を選べ。 (A)単射でも全射でもない(B)単射だが全射ではない (C)全射だが単射ではない(D)全単射である という問題なのですが、gfが1となる元が存在しないので(B)の単射だが全射ではないと思うのですが、回答を見たら(D)の全単射でした。なぜ全射になるのか分らないのですが、教えていただけないでしょうか。 よろしくお願いします。

  • 写像の単射全射のところの関係式に関する証明について

    写像の単射全射のところの証明がわからないので、ご教授ください。 集合AからBへの写像をfとし、a∈A,P⊂A,b∈B,Q⊂Bとする。 1.fが単射のとき、a∈P ⇒ f(a)∈f(P)の逆が成り立つことの証明 2.fが単射のとき、P1⊂P2 ⇒ f(P1)⊂f(P2)の逆が成り立つことの証明 3.fが単射のとき、f(A-P) ⊃ f(A) - f(P) の逆が成り立つことの証明 4.fが単射のとき、f^(-1)(f(P)) = Pの証明 5.fが全射のとき、∃a'∈f^(-1)(Q), b=f(a') ⇒ b∈Qの逆が成り立つことの証明 6.fが全射のとき、Q1⊂Q2 ⇒ f^(-1)(Q1)⊂f^(-1)(Q2)の逆が成り立つことの証明 7.fが全射のとき、f(f^(-1)(Q)) = Qの証明 以上の7問です。 何個かだけでも構いませんので、回答して頂ければ嬉しいです。 また、はじめての質問ですので、ご迷惑をおかけするかもしれませんが、よろしくお願いいたします。

  • 写像と単射、全射に関する問題について質問です

    次の問題の解法がわかりません…誰か教えてください 写像f:X→Yに対してF:P(X)→P(Y)を F(B):=f^-1(B)と定義する。 このとき、fが全射⇔Fが単射 を示せ。

  • 写像について

    写像がwell-definedである定義がよく分かりません。 というのも、well-definedの定義が もしa=bであるなら写像 f(a)=f(b)である。 というのは分かります。 ですが、教科書に、正式な写像の定義とは 写像f:A->Bとは、集合AXBの部分集合(a,f(a))であり (a∈A、f(a)∈B) 写像がwell-definedである時は、(集合としての)写像の全ての最初の要素(Aに属するもの)が一度しか現れない時である。 みたいなことが書かれてました。 ですが、仮にそうだとしたら 写像 f: A->R で、f(a)=5 だとします。 ですが、5は10/2とも20/4とも同等関係にあるため、さらに5, 10/2, 20/4∈Rです。 f(a)=5, 5=10/2 で推移律から f(a)=10/2と言えるはずです。 で、b=5 b'=10/2とおくと f(a)=b, f(a)=b' となり、写像は(a,b)と(a,b')と最初の要素aが二個以上出てきます。 つまり、これはwell-definedでは無い、ということになります。 勿論(a,b)と(a,b')は同値関係にあり、上のもしa=bならばf(a)=f(b)である というのには適応しますが、 教科書の定義には反することになってしまいます。 何故ならこの写像は(a,b)と(a,b')が成立せねばならず、さらにbとb'はRに存在することから 確実に二つ以上の(実際は無限)の最初の要素がaの写像集合が出来てしまうからです。 分かりにくいかもしれませんが、もう一度言うと、 写像の中には推移律により(a,5)も(a,10/2)存在しなければならず、勿論5=10/2ですが、 二組以上存在するのは、確かです。 ということは、教科書の定義が間違っている、ということでしょうか? それとも、私の理屈に何か間違いがあるのでしょうか。。? どなたかよろしくお願いします。

  • 全射、単射

    例えば、「f:A→B,g:B→C,x∈Aの時g・f(x)が全射⇒f(x)は全射を示せ。」 という問題なんですが、g・f(x)の意味がよく分からず問題の解き方がわかりません。 だれかぜひ教えてください。 お願いします。

  • 写像の合成と定義域

    写像について、逆写像と定義域がわからないので質問します。 問題は、Aを正の偶数全体からなる集合、Bを正の奇数全体からなる集合として、f:A→Bをf(x)=x-1によって定義する(1)f^(-1)を求めよ。(2)f^(-1)・f、f・f^(-1)(・は合成写像の記号のつもりです。)を求めてそれらの定義域、値域を明らかにせよ。 というものです。 解答(1) fはAからBの上への1対1の写像である・・・(ア)から、その逆写像f^(-1)は存在して、f^(-1)はBからAの上への1対1の写像である・・・(イ) またf(x)=x-1よりx=f^(-1)(x-1)、x-1=yとおくと、x=y+1よりy+1=f^(-1)(y)すなわちf^(-1)(x)=x+1。 (2) {f^(-1)・f}(x)=f^(-1){f(x)}=f(x)+1=(x-1)+1=x、{f・f^(-1)}(x)=f{f^(-1)(x)}={f^(-1)(x)}-1=x+1-1=x、 ここで(ア)(イ)よりf^(-1)・fはAからAの上への1対1の写像で、f・f^(-1)はBからBの上への1対1の写像である。したがって、f^(-1)・fの定義域、値域ともにA、f・f^(-1)の定義域、値域ともにB。 自分なりに考えてみて疑問があるのですが、問題(1)はf(x)の逆関数を求めればよい、しかしy+1=f^(-1)(y)としては、逆関数を求めるときのxとyを入れ替えるができないし、解答ではyをxに書き換えるといったことをしている。これが最初の疑問です。問題(2)では{f^(-1)・f}(x)のxはAの任意の要素で、{f・f^(-1)}(x)のxはBの任意の要素であると思うのですが、これはf(x)のxはAの任意の要素で、{f^(-1)(x)}のxはBの任意の要素であり。{f^(-1)・f}(x)=f^(-1){f(x)}とf^(-1)の要素がf(x)、f(x)の要素xはAの任意の要素だからと考えました。同様に{f・f^(-1)}(x)も考えましたが、自分の考えがあっているか疑問です。 どなたか、なぜ問題(1)でyをxに書き換えるかをしてよい理由と、問題(2)で自分の考えがあっているかと、間違っているときは、なぜ解答のようになるのかを教えてください。お願いします。

  • 商空間における全射について

    商空間の定義で出てくる、『全射』がよくわかりません。 内田伏一著、集合と位相の96ページに、定義として、 (X,O)を位相空間とし、f:X→Yを集合XからYへの全射とする。集合Yの部分集合族O(f)を O(f)={H∈B(Y)|f^(-1)(H)∈O} によって定義する。 とあるのですが、ここでf^(-1)の逆写像の存在を認めていますよね?しかし、fは全単射ではなく、全射としか仮定がついていないのに、この逆写像は存在することにしてしまっていいのでしょうか?? すごく初歩的なことかもしれませんが、アドバイスお願いします。

  • 圏論:単射かつ全射であるのに、同型でない例

    圏論を勉強し始めたのですが、「mono(単射) かつ epi(全射)であるのに、iso(同型)でない例」を以下のように考えました。この考え方は正しいでしょうか? 対象 ABC と、射 f:A→B 、g:B→C 、 h=g・f と、自明な3つの恒等射 からなる圏において、 これらは圏の定義を満たす。 fはmono (∵ Aへの射はAの恒等射のみであり、一意) fはepi (∵ Bからの射は2つ。BからCの射はgのみなので、一意。BからBへの射は恒等射のみなので一意。) fはisoでない (∵ BからAは射が存在しない)

  • 写像についてです

    (1) 『写像f:A→Bとg:B→Cについて、fとgとの合成写像はfの終集合とgの始集合(定義域)とが一致するときに限って定義される』(集合位相入門/松坂和夫) これについて、 f:A→Bとg:C→Dで f(A)⊂BかつB⊂Cならば べつにfの終集合とgの始集合(定義域)とが一致しなくても良いと思ったのですが、違うのでしょうか? (2) 『対応(≠写像)F,GがいずれもAからBへの対応であって∀a∈AでF(a)=G(a)の時FとGは等しい。2つの対応の相等を論じ得る為には、もちろんそれらの始集合,終集合がそれぞれ一致していることが前提である』(集合・位相入門/松坂和夫) これについても似たようなことなんですが、FがAからBへの対応,GがAからCへの対応であり,さらに任意のAの元aについてF(a)=G(a)という時は,別にB=CでなくともC⊂BとかB⊂Cのときも対応FとGは等しいと言えませんか? 私は,始集合が一致していることとF(a)=G(a)が成り立っていること つまり始集合と値域が一致していれば、この2つの対応は等しいとは言えると思ってました。 具体的には 対応F:A→B対応G:A→Cとする。ここでは、B⊂Cとしても一般性は失われない。 さて、今が任意Aの元aについてF(a)=G(a)が成り立っているとする。 これはF(A)=G(A)ということ。 ここでF(A)=G(A)⊂B⊂C⊆Dなる集合Dをとれば対応FとGはともにAからDへの対応とも言える。 すると、定義から対応FとGは等しい。 これではダメでしょうか? 始集合と終集合に関する記述はどうも混乱します… (1)(2)についてどなたか分かる方がいらっしゃいましたら回答よろしくお願いしますm(__)m