• ベストアンサー

花火  量子力学

花火が光る仕組みを簡単に説明すると以下のようになりますか? エネルギー準位E1<E2<E3として,はじめE2の準位にあった原子が熱エネルギによりE3に励起され,自発的にE1に光子を放出しながら遷移する.

質問者が選んだベストアンサー

  • ベストアンサー
  • ORUKA1951
  • ベストアンサー率45% (5062/11036)
回答No.2

 金属の炎色反応、エネルギー順位は、あくまで高い位置と低い位置との相互です。基本的にもとの位置に戻る。従って発光すると言う事は、同じ波長の光を吸収するということでもあるのです。  例えば、水素の吸収線はスペクトルの中で暗線として観察されますが、それは同時にその波長の光を別の方向に放射もしているということです。  結構炎色反応の説明ははしょって説明されているので誤解されている向きもあるようです。 1) 塩を使うことが多いのは揮発性があるからです。そのため塩化物や硝酸塩を使用します。  硫酸塩は過熱時に分解してしまう。 2) 揮発した塩は過熱されてプラズマ(イオン)に分解されます。 3) 金属イオンは直ちに電子を補足して基底状態の金属原子になります。   金属は最外殻の電子は一個ないし2個です。 4) この電子は熱で上の軌道に励起されます。(エネルギー格差は決まっています) 5) 上がってもすぐ元の軌道(3)の位置に落下します。  この遷移の間に特定の波長の光を吸収・放出するのが炎色反応です。 こちら  ⇒雑科学ノート - 発光の話 -( http://hr-inoue.net/zscience/topics/radiation/radiation.html )  実際にはもう少し複雑ですが・・

masics
質問者

お礼

回答ありがとうございます. 元の準位に戻るということですが,そうなると花火を楽しんだあとにとびちった燃えかすに火を近づけると色がつくということになると思います. そのような経験がないのですが,そういった現象はおこりますか?

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (2)

  • ORUKA1951
  • ベストアンサー率45% (5062/11036)
回答No.3

No.2です。 >元の準位に戻るということですが,そうなると花火を楽しんだあとにとびちった燃えかすに火を近づけると色がつくということになると思います.  回答やリンク先をきちんと読まれているとそういう疑問はでてこないはずです。  炎色反応を示す状態になるためには、金属原子がバラバラにならないとならないです。 ≫1) 塩を使うことが多いのは揮発性があるからです。 ≫2) 揮発した塩は過熱されてプラズマ(イオン)に分解されます。 (リンク先) ≫金属イオンは飛び散り、その辺にいる電子を捕まえて中性の原子になります  花火に入っているものも金属塩塩です。  燃えた後は、酸化物などの金属塩の結晶になっていますから、それがバラバラになる事はないです。  もちろん細かく砕いて火薬に混ぜるとか、塩化物や硝酸塩にして水溶液にして炎に入れれば炎色反応を観察できます。学校の定性分析で金属塩を硝酸や塩酸で処理してから炎色反応を試したはずです。・・ゆとり世代は実験してないかも。

masics
質問者

お礼

回答ありがとうございます. しっかり読んでいなくてすみませんでした. なるほど.酸化物になり安定になるともう炎色反応は示さないわけですね. ゆとり世代ですが,炎色反応は映像でみただけで実験していないように思います.

全文を見る
すると、全ての回答が全文表示されます。
  • tanuki4u
  • ベストアンサー率33% (2764/8360)
回答No.1

http://ja.wikipedia.org/wiki/%E7%82%8E%E8%89%B2%E5%8F%8D%E5%BF%9C 炎色反応 E2 ↓ E3 ↓← これは起こらんだろう、先客がいるから E1

masics
質問者

お礼

もとのエネルギーに戻るとすると花火を楽しんだあとにまた燃えかす,とびちったもの火を近づけると色がつくと思うのですが,経験的にそのようなことはおこらないと思ったので,同じ準位にしませんでした. 花火は複数回色がつくんですかね? 炎色反応でしたら,何回も色がつくので納得できます.

masics
質問者

補足

回答ありがとうございます.

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 原子の励起エネルギーについて

    「基底状態の原子に「原子の励起エネルギーE1」と同じエネルギーの光子をあてると(又は何らかのことを施すと)、その原子は、基底状態から励起状態になり、その後(平均寿命で?)、エネルギーE2=h・ν2(=E1?)の光子を放出して、基底状態に戻る」、というような現象があるかと思います。 質問(1) 原子が励起状態から基底状態に戻るときに(戻ることにより)原子から放出される光子のエネルギーE2=h・ν2は、 (A):地面からの高さ(重力の強弱)によって異なるのでしょうか? (B):あるいは、地面からの高さ(重力の強弱)によらず同じなのでしょうか? 質問(2) 「原子が励起状態から基底状態に戻るときに原子から放出される光子のエネルギーE2=h・ν2が、地面からの高さによって異なる」場合(質問(1)で(A)の場合)、それは、 (D):原子の励起エネルギーE1が重力の強弱によって違うため(E1=E2なので、E1が違うとE2も違うことになるため)?、 (E):放出される光子のエネルギーE2が重力によるドップラー効果の影響を受けるため?、 (F):(D)と(E)の両方のため?、 (G):その他のため?、 なのでしょうか? 質問(3) 質問(2)で(D)(又は(E))の場合、 (H):「原子の励起エネルギーE1」≠「原子が励起状態から基底状態に戻るときに放出される光子のエネルギーE2」になるのでしょうか?、 ( I ):あるいは、その他のことになるのでしょうか? 知っている方がおられたら、教えていただけると、ありがたいです。 (何かおかしなことをいっている、意味不明の場合は、無視してください。「分かっていれば、質問しない」→「質問しているというこは、よくわかっていない」ということで、ご容赦ください。) よろしく、おねがいします。

  • X線の散乱について

    X線のレイリー散乱が何故起きるのか分かりません。 光子を束縛電子が吸収して、エネルギーが増加して、同じエネルギーの光を放出して元の準位に戻って来るというのは感覚的に信じられません。 ほとんどの場合は、電子は原子から出て行ってしまったり、高い準位に遷移してそこからだらだらエネルギーを放出していきそうな気がします。 よろしくお願いします。

  • 原子が励起した後光子が必ず一つだけ放出される理由

    高校物理では,原子が励起した後,光子が一つ放出される,とあります. ここで,励起した原子が必ず一つだけ光子を放出する,という事実の 説明は聞いたことがないのですが,何か明確な理由があるのでしょうか. 複数の光子が放出されてもいいと思います.

  • 量子の衝突がすり抜けるときアインシュタインの間違い

    ビリヤードは大きな重い玉がビリヤード盤の上を転がりぶつかり合います。ボウリングではボールがガータに落ちぬ限りピンにぶつかり合います。 量子がぶつかるときを見ると、アインシュタインが光子一個に電子一個が対応して、飛び出すという光電効果のモデルをたてました。 ところが光電効果を思い出してみると、光子がぶつかったのに、いやぶつかったはずなのに素通りとしか考えられぬほうが、電子の飛び出ぬ現象のほうが多いことに気が付きました。 むしろぶつからないほうが普通なのです。 止まっている静止状態の物体に光子がぶつかるとき、確かに進路が同時に同時点同位置に重なったのに、光子が物体に衝突しているとは限らないのです。 アインシュタインは論理を間違ったのです。 原子には暗線と輝線という原子の種類に特有のスペクトルを持ち、それ以外の光色の光子の持つエネルギーを受け付けない性質があったはずです。励起と遷移が電子の軌道準位に起き、遷移のときにしか電子は原子から出てこないのです。 遷移と励起に関する性質は確かにリュードべりが見つけています。 すると衝突したはずの場所をすり抜けてしまう球はビリヤードにもボーリングにもありませんから、量子には粒子性が存在しないという方が、より正確に現象を理解できるはずです。 ぶつかるように見える性質は波動が生み出した見かけの姿といったほうがより確かです。 なぜ、この議論が物理学史にないのでしょうか。 なぜ、すり抜けてしまうことを授業に教えないのでしょうか。 アインシュタインがミスをしていることをなぜ無視するのでしょうか。

  • 分子エネルギー準位の下降

    分子の固有振動エネルギーと等しいエネルギーが外力によって加えられたとき分子のエネルギー準位が励起されるのは分かったのですが、エネルギー準位が下がって、熱や光が放出されるのはどういうときに起こるのでしょうか? あとエネルギー準位が下がって放出されるのが、熱あるいは光というのは物質によって異なるのでしょうか? よろしくお願いします。

  • 希ガスの黒体放射

    黒体放射についての質問です。あらゆる物質はその温度に応じて電磁波を放出しているという言葉をよく目にすることがあります。 (1) これは、物質を熱するといわゆる振動や回転などの状態が励起され、電磁波を放出するということなのでしょうか。 電磁波を出すには、励起状態から基底状態への遷移が必要になってくると思います。しかし、ヘリウムやアルゴンなどの希ガスは単原子分子であり、極めて安定な分子であり、赤外不活性です。そうなると、電磁波を吸収したり、放出するエネルギー準位が、電子状態ぐらいしか存在しません。 (2) 常温で希ガスの放射スペクトルを観測すると、どの波長の電磁波が観測されるのでしょうか。その温度に応じた黒体放射が観測されると思いますか。 (3) 電磁波を吸収・放出するためには、離散化されたエネルギー準位が必要と思われます。しかし、ヘリウムやアルゴンなどの単原子分子の場合、振動、回転といったモードは考えづらく、かといって並進運動はエネルギー準位が非常に小さいために、電磁波として放出される波長は検出できないくらいの長い波長になってしまうのでしょうか。また、それはドブロイ波になるということでしょうか。 (4) 黒体放射の電磁波は並進エネルギーからも出ているのでしょうか?並進運動は、直接、電磁波を吸収したり、放出したりすることはできるのでしょうか。

  • 統計力学

    N個の原子からなる熱平衡系があり、各原子は2つのエネルギー準位をとります。カノニカル分布を用いて、各エネルギーの原子数の平均値を求めなさい。 という問題があるのですがわかりません。教えてください!!

  • NMRでプロトンを励起する光子数

    タイトルどおりです。レベルの低い質問でスミマセン。 外部磁界中の水素の核スピンにRFで共鳴をさせ励起させます。 このときいくつの光子を吸収して高いエネルギー準位に遷移すると考えると良いのでしょうか。

  • 反転分布の必要性について

    レーザーの発振条件に反転分布というものがあり、これは基底状態(≒レーザー下準位)にある原子密度n1より励起状態(レーザー上準位)にある原子密度n2の方が多い状態、つまりn2-n1>0であるような状態を作り出すことだそうですが、なぜこの条件になるのでしょうか? ものの本にはこの状態を作り出す必要性として「吸収より放出の方が多い状態にするために・・」などと書かれていましたが、そもそも下準位にある原子が吸収する波長と、上準位にある原子がレーザー遷移で放出する波長は異なり、誘導放出は後者のレーザー遷移に伴って起こる現象なので、純粋にn2の原子数だけで放出量が決まってしまい、吸収量との相対的な関係(n2-n1)を考えるというのは意味がわかりません。発振させるのになぜn1との関係が必要なのでしょうか。 この考え方、どこが誤っているのでしょうか、詳しい方ご教示ください。

  • 原子時計の進み方が重力によって違うことについて-2

    原子時計の進み方が重力によって違うことについて、いろんな方から、いろんなことを教えていただいたのですが、 以下のようなことを思い描いています。 これって、どうなのでしょうか? (1)原子時計は、「重力による力学的?影響」を受けない(はず)。そのように作ったはず。 「原子の励起エネルギー」は「重力による力学的影響」を受けないはず。原子を励起させるための「振動子(発振器)」も「重力による力学的影響」を受けないはず。「振動子を制御するもの(回路?)」も、「振動子の振動を検出して、それを地上に伝える仕組み」も、原子時計の「全てのもの、全てのこと」は、「重力による力学的?影響」を受けないはず。    ↓ (2)従って、原子時計を使えば、地球上のどこでも(また、宇宙のどこでも)、同じように時間を計る(合せる?)ことができるはず。    ↓ (3)実際に、地上と上空の両方で原子時計を動作させてみた。    ↓ (4)すると、「地上の原子時計の振動子の振動回数がN回になったときに、上空の原子時計の振動子の振動回数はすでにN回を超えている」???    ↓ (5)なぜ???  「重力による力学的?影響」を受けないはずなのに、なぜ???  「重力による力学的?影響」を受けないはずなので、「地上の原子時計の振動子の振動回数がN回になったときに、上空の原子時計の振動子の振動回数もN回になる」はずなのに、なぜ???    ↓ (6)なぜ?、なのだが、実際に、そのような現象が起きているのだから、その現象を受け入れなければならない。    ↓ (7)とすると、「重力による力学的?影響」以外の「何らかのもの、何らかのこと」であって、「地上」と「上空」との違いによる「何らかのもの、何らかのこと」が、原子時計に関与しているとしか考えられない。 そう考えるしかない。    ↓ (8)とすると、その「何らかのもの、何らかのこと」とは、何???    ↓ (9)「地上の振動回数」と「上空の振動回数」を比較するということは、「地上の基準のもの(地上の時間?)」で「上空の回数」を数える(また、「上空の基準のもの(上空の時間?)」で「地上の回数」を数える)、ということになるのか?    ↓ (10)とすると、その「何らかのもの、何らかのこと」とは、時間になるのか???  地上と上空とで時間が違うからなのか? 時間の進み方が違うからなのか?  地上と上空とで時間の進み方が違うとすれば、・・・「同じN回の現象」を異なる基準(時間?)に則って検出するのだから、確かに、「地上の原子時計の振動子の振動回数がN回になったときに、上空の原子時計の振動子の振動回数はすでにN回を超えている」ということになるわなあ。  そう考えるしかないのか、そう考えるべきなのか、・・・ということやなあ。  上空の原子時計の「全てのもの、全てのこと」(入れ物から、励起原子から、振動子から、電気回路の配線から、電気回路中の原子核や電子から、まさしく、全てのもの、全てのこと)が、地上の基準(時間?)で「観測すると」、ということか。 「嫌な観測問題」ということか。    ↓ (11)そして、「エネルギーの定義の中に時間が含まれている」ので?(エネルギー:kg・m・m/(s・s)なので?)、時間とエネルギーの関係から、エネルギーの観点から解釈しても同じということか。  「エネルギーの基準?」みたいなものが、地上と上空とで違っている、ということか。  「地上のエネルギーの基準?」みたいなもので、上空の原子時計の「原子の励起エネルギー」を観測すると、地上の原子時計の「原子の励起エネルギー」よりも高い、ということか。(エネルギーについての「嫌な観測問題」ということか)  但し、「原子の励起エネルギー」だけでなく、原子時計の「全てのもの、全てのこと」のエネルギーが、「地上のエネルギーの基準?」みたいなもので「観測すると」、地上のものより高い、ということか。    ↓ (11-1)仮に、上空の原子時計の「励起原子が基底状態に戻ることで放出する光子」が地上に届いたとすると、その光子のエネルギーは、地上の原子時計の「励起原子が基底状態に戻ることで放出する光子」のエネルギーよりも高い、ということか。    ↓ (11-2)これが、光の「重力によるドップラー効果」というやつか???。  光の「重力によるドップラー効果」というやつは、(a)「時間の進み方が異なるので、光の振動数が変化するため」と解釈することもできるし、(b)「光と重力との作用で光の運動エネルギーが変化するので、光の振動数が変化するため」と解釈することもできるし、(c)「励起エネルギーが異なるので、放出される光子の振動数が変化するため」と解釈することもできる?、ということか?。  「励起原子が基底状態に戻ることで放出する光子」でなく、「電子の熱運動により放出される光子」の場合は、(c)の解釈に代えて、(c’)「電子の熱運動による運動エネルギーが異なるので、放出される光子の振動数が変化するため」と解釈することもできる?、ということか?。    ↓ (12)また、振り子時計の場合は、周期T=k√(L/g)なので、地上g1、上空g2とすると、「重力による力学的?影響」を受けて、地上の振り子時計の周期はT1=k√(L/g1)、上空の振り子時計の周期はT2=k√(L/g2)になるはず?。    ↓ (12-1)とすると、振り子時計の場合は、「重力による力学的?影響」を受けて、「地上の振り子時計の振動回数が1/T1回になったときに、上空の振り子時計の振動回数は1/T2回になる」はず?。  すなわち、「重力による力学的?影響」以外の「何らかのもの、何らかのこと」が、振り子時計に関与していなければ、「地上の振り子時計の振動回数が1/T1回になったときに、上空の振り子時計の振動回数は1/T2回になる」はず?。  そして、原子時計に関与するのと同じ「何らかのもの、何らかのこと」(時間の進み方?なのか、エネルギーの基準?みたいなものなのか)が、振り子時計にも同じように関与するならば、上空の振り子時計の周期はT2=k√(L/g2)よりも短くなって、「地上の振り子時計の振動回数が1/T1回になったときに、上空の振り子時計の振動回数は1/T2+α回になる」はず?。←これを確かめてみたい(無理っぽいが)。    ↓ (12-2)ということは、天体の公転運動にも、この「α」に対応する・・・が・・・ということか。←これも計算してみたい(計算の仕方は、知らんし、たぶん、挫折するけど)。    ↓ (13)また、エネルギー:kg・m・m/(s・s)の関係から、空間の観点から解釈しても同じということになるのか???。  「空間の基準?」みたいなものが、地上と上空とで違っている、ということか?。  「地上の空間の基準?」みたいなもので、上空の原子時計の「原子の原子核と電子との距離(又はそれに対応するもの)」を観測すると、地上の原子時計のものよりも長い、ということか。(空間についての「嫌な観測問題」ということか)。  但し、「原子の原子核と電子との距離」だけでなく、原子時計の「全てのもの、全てのこと」の長さがが、「地上の空間の基準?」みたいなもので「観測すると」、地上のものより長い、ということか。    ↓ (13-1)原子核と電子との距離rに着目すると、r1→ka・r1、r2→ka・r2、r2-r1→ka(r2-r1)になって、エネルギー準位がE1→kb・E1、E2→kb・E2になって、励起エネルギーがE2-E1→kb・(E2-E1)になって、励起状態から基底状態に戻るときに放出される光子のエネルギーがhν→h・kb・νになる((a)時間の進み方が異なるためとも解釈できるし?、(b)光子が重力との作用で光子の運動エネルギーが変化するためとも解釈できる?)、ということなのか???    ↓ (13-2)振り子時計の場合は、「L」が長くなって、周期がT2=k√(L/g2)よりも短くなって、振動回数が「1/T2+α回」になる、ということなのか???    ↓ (13-3)砂時計の場合は、砂の粒が大きくなって、砂の落下口が大きくなって、砂の落下口から砂時計の底までの距離が長くなって、・・・というようなことになるのか???    ↓ (14)ということは、kg・m・m/(s・s)の関係から、質量の観点から解釈してもよく、質量の観点から解釈しても同じということになるのか???。    ↓ (15)というようなことを、思い描いて・・・? 「光速度C=一定」というのが出てきてへん。    ↓ (16)どこ? 「光速度C=一定」は、どこ??? 「光速度C=一定」は、なくてもよいのか???    ↓ というようなことを、思い描いています。 これって、どうなのでしょうか? (A)まあまあ。 (B)いまいち。 (C)おしい。 (D)ちょっと違う。 (E)全然違う。 (F)その他。 よろしくおねがいします(ありがとうございました)。