• ベストアンサー
  • すぐに回答を!

統計力学

N個の原子からなる熱平衡系があり、各原子は2つのエネルギー準位をとります。カノニカル分布を用いて、各エネルギーの原子数の平均値を求めなさい。 という問題があるのですがわかりません。教えてください!!

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数95
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • htms42
  • ベストアンサー率47% (1120/2361)

温度とエネルギーの準位差がわかればできるのではないですか。

共感・感謝の気持ちを伝えよう!

質問者からの補足

絶対温度はTで、エネルギー準位はE1とE2です。

関連するQ&A

  • 統計力学。最も確からしい値について

    著者: 久保亮五 大学演習熱学・統計力学 修訂版 P239 問18 からの質問です。 単原子分子N個からなる理想気体が温度Tのカノニカル分布をもつとき、その全エネルギーEの最も確からしい値E*を求め、カノニカル分布による平均値E'に一致することを確かめよ。 という問題の解説で、 理想気体の状態密度はE^{(3N/2)-1}に比例することが分かっているので、 exp(-E/kt)E^{(3N/2)-1} = max を与えるE*は、(N>>1)両辺の自然対数をとって -E/kT + 3NlogE/2 =max から、両辺をEで偏微分すると、 -1/kT + 3N/2E* =0 となり、E*=3NkT/2 となる。 なのですが、最初の exp(-E/kt)E^{(3N/2)-1} = max の意味がわかりません。 なぜ状態密度とボルツマン因子をかけたのでしょうか。 最も確からしい値α*というのは エントロピー S(E,N,V,α)=max になるということでした。 エントロピーというのはボルツマンの関係式から S=klogW (W:エネルギーがE~E+ΔE 中に存在しうる微視的状態数) です。 また、Wというのは状態密度Ωを用いるとW=ΩdE です。 自分が思うに、 exp(-E/kt)E^{(3N/2)-1} の部分はWのことだと思いました。 しかし、ボルツマン因子に状態密度をかけたものが状態数になる意味がわかりません。

  • カノニカル分布

    統計力学を復習しているのですが疑問があります。カノニカル分布は熱浴中の(透熱で物質を通さない)系について考えるのですが、熱浴を温度一定の孤立系と考えるとします。このとき、熱浴は孤立系なのでミクロカノニカル分布が適用されることになります。 (1)それなら、カノニカル分布はミクロカノニカル分布の一部と考えてよいのでしょうか。(平衡状態なら熱浴の温度はどこも一定になるので) (2)またミクロカノニカル分布はエネルギー一定のアンサンブル平均を考えていますが、それならカノニカル分布は時間平均を考えることになるのでしょうか。 (3)カノニカル分布は熱浴に比べて十分小さいと考えています。でも平衡状態なら、カロニカル分布で求めた物理量は系のどこでもおんなじになります。それならカロニカル分布は系のいたるところで成立しているから、系全体にカロニカル分布を適用できないのでしょうか。 解説よろしくお願いします。

  • 統計力学についての質問

    「ミクロカノニカル分布、カノニカル分布、グランドカノニカル分布」と 「マクスウェル・ボルツマン(MB)分布、フェルミ・ディラック(FD)分布、ボース・アインシュタイン(BE)分布」の違い(?)がわかりません。 というか、この『分布』という言葉は同じ意味として受け取っていいのか?ということです。 (あるときはグランドカノニカル分布、あるときはFD分布というように同じ括りで考えていいのか?という疑問です。) ミクロカノニカル分布:平衡における孤立系での分布 カノニカル分布:熱溜に接する系での分布 グランドカノニカル分布:さらに、粒子のやり取りがある系での分布 MD分布:下記二つの古典的極限 FD分布:フェルミオンの従う分布 BE分布:ボソンの従う分布 というような個々の定義や、ミクロカノニカル→カノニカル→グランドカノニカルの導出、FD、BE→MBの導出のそれぞれについては何とか理解できるのですが、これら二つの「分布」がどうにも結びつきません。 調べてみると、古典統計的なカノニカル分布、古典統計的なグランドカノニカル分布、量子統計的なカノニカル分布、量子統計的なグランドカノニカル分布があるようですが(1粒子状態を考慮する=量子統計だったかと)、それでは「古典ならMB」とか「量子ならFDもしくはBE」とかいう考えは間違っているのか?などの疑問が沸きます。 細かい部分では、前者の分布は「カノニカル"集団"における分布」と表現されるのに対して、後者の分布は「フェルミ"統計"に従う粒子の分布」と表現される違いがあったりするので、同じ『分布』として捉えていいのかすら分かりません。 (例えば、熱溜に接する系でのフェルミオンの分布は、カノニカル分布かつFD分布になるというおかしな?ことになるのかなぁとか) 質問の論旨が漠然としていてスミマセン。よろしくお願いします。

  • 統計力学の質問です

    エネルギーとして+εか-εしか取れないN個の粒子が 温度Tで熱平衡状態にある系について考えています。 エネルギーが+εの粒子の個数をN+ -εの粒子の個数をN-として M = N+ - N- と置きます。 このときN+及びN-を温度Tの関数として表せ、という問題です。 とりあえず分配関数などを計算したりしてみたのですが、なかなか解答に辿りつけません。 解法等をご教授いただけるとありがたいです。

  • 統計力学初歩:縮退がある場合の配置の数

    教科書を読んでいてちょっと混乱しました。 原子のエネルギー分布はボルツマン分布に従う 与えられた状態での全原子数N 全エネルギーEとする 原子のエネルギー:ε0、ε1、ε2、・・・・εi・・・・ 状態数:g0、g1、g2、・・・・gi・・・・ 原子数:n0、n1、n2、・・・・ni・・・・ であるときに一つの分布を代表する全状態数Wは W=Π N!gi/ni! となる。。 とあります。どこが分からないんだよ。といわれそうですが、 あるエネルギー状態εiに原子がni個入ってるのですよね。 giは何重縮退のしているかですよね。。 この場合の状態数「gi」がピンときません。。 なぜWを数え上げるときにgiがかかるのでしょう。 niでその状態の原子の数は数えられている気がするのですが。。 あほな質問とは思いますが、 どこが抜けているかご教授ください。

  • 統計力学の問題

    以下の問題で1番を解く際に、ボース分布を使って説くべきなのでしょうか。ギブス因子を考えて解くべきなのでしょうか。頭が混乱しています。それとNは変化するのでしょうか。回答よろしくお願いします。 一辺L の立方体の空洞が温度T の熱浴と接触している場合を考える.熱放射により空洞内で定常振動の電磁波が形 成される.電磁波は2つの偏りがある横波として光速c で伝わる.壁での電磁波の振幅が0 となる境界条件のもとで は,空洞内の電磁波の固有振動の振動数は ν = c2L√(nx^2 + ny^2 + nz^2) , (nx, ny, nz = 1, 2, 3, 4,,,,, ) で与えられる.この条件を満たす固有振動数を小さいものから順番に ν1,ν2,ν3,,,,,νj,,,, (4-1) とする.空洞内の粒子系全体の量子状態を各固有振動ごとの光子数N1, N2, N3,,,,,Nj,,,,,, で表す.この時,零点エ ネルギーを無視して,空洞内のエネルギーは次式で表されるものとする. E =ΣhνjNj  h はプランク(Planck) 定数である.また,ボルツマン(Boltzmann) 定数はk を用いよ. 以下の問いに答えよ. 1. 光子は化学ポテンシャルがゼロのボーズ(Bose) 粒子として振舞う.この系のカノニカル分布と分配関数を求めよ. 2. 1より,特定の偏りにおける振動数νj の固有振動の平均光子数と平均エネルギーを計算せよ.

  • N粒子の2準位系の比熱

    N粒子の2準位系の比熱 下記問題の解答に間違いがあるとのご指摘を受けました。 最後の比熱の式が間違っているのではないかということです。 (http://okwave.jp/qa/q6074091.htmlより) どこか間違っているでしょうか。 ご回答いただけたら幸いです。 -- N個の独立した粒子からなる系がある。 各粒子は2つの内部状態A,Bのいずれかをとりうる。 ここで状態Aは基底状態でそのエネルギーは0であり、 状態Bのエネルギーはεである(ε>0)。 粒子はそれぞれの位置に固定されており、 その並進運動を考える必要は無い。 この系に関する以下の問いに答えよ。 まず、この系が温度Tの熱浴と熱平衡状態にあるとする。 問1 状態A,Bを取る粒子の数をそれぞれ求めよ。 →カノニカル分布なので、(1)、(2)の分布関数を持つ。 それぞれの粒子数をn_A,n_Bとすると、(3)(4)である。 問2 この系のエネルギーU(T)を求めよ。 →エネルギーと粒子数をかけると(5)のようになる 問3 この系の比熱を求めよ。 →エネルギーをT微分したものをまとめる

  • 統計熱力学

    水を加熱すると蒸気になり、さらに加熱すると水素結合がこわれ、それそれの水分子は最終的に水素原子と酸素原子になる。 この記述を統計熱力学的に説明するとどうなりますか? 私なりに考えてみたんですが、よくわかりません。アドバイスください。 温度が上昇するにつれシステムがとり得るエネルギー準位の数が増大します。だから水素原子と酸素原子に分解されエネルギー準位の数がより多い状態になる。見たいな感じですか?

  • 物理化学の問題を解いてみたのですが、あっているかわかんないです。アドバ

    物理化学の問題を解いてみたのですが、あっているかわかんないです。アドバイスよろしくお願いします。 単原子分子からなる理想気体の容積を自由に変えられる容器中で温度Tにおいて熱平衡に達している。このとき、系内の分子は離散的な並進エネルギー準位にたいして温度Tで決まる分布をとる。 系の温度を保ったまま、外部から圧力を加えて容器の体積を半分にした。このとき容器内の気体分子の 内部エネルギーはどのようにへんかするか、また分子のエネルギー準位に対する分布はどのように変化するか。 まず、内部エネルギーの変化ΔUは dU=-PdV+SdT 等温過程のため dU=PdV ΔU=-nRTIn(1/2)であらわされる。 次にTの温度で熱平衡に達している単原子分子の並進エネルギーの分布は q = V/L L=h(β/2πm)^1/2 であらわされる。 そのため体積が1/2になるとqは小さくなる。体積の減少すると、温度Tの系で分子が熱的に取りうる状態の数が少なくなる。 これでいいのでしょうか。

  • 量子力学◆実現確率◆統計力学

    量子力学と統計力学の実現確率について質問します。 量子力学的な統計力学における、正準分布(カノニカル分布)の場合の、体系がエネルギーEjの微視的状態をとる確率はPj=e^-βEj/Σie^-βEiで 与えられると思いますが、 エネルギー固有関数φnで展開した場合の量子力学の状態Ψ=Σn<φn|Ψ>φnで、j状態が実現する確率は、 |<φj|Ψ>|^2≡|cj|^2で与えられます。この二つの 実現確率は同じものか違うのかがよく分かりません。