• 締切済み
  • 暇なときにでも

希ガスの黒体放射

黒体放射についての質問です。あらゆる物質はその温度に応じて電磁波を放出しているという言葉をよく目にすることがあります。 (1) これは、物質を熱するといわゆる振動や回転などの状態が励起され、電磁波を放出するということなのでしょうか。 電磁波を出すには、励起状態から基底状態への遷移が必要になってくると思います。しかし、ヘリウムやアルゴンなどの希ガスは単原子分子であり、極めて安定な分子であり、赤外不活性です。そうなると、電磁波を吸収したり、放出するエネルギー準位が、電子状態ぐらいしか存在しません。 (2) 常温で希ガスの放射スペクトルを観測すると、どの波長の電磁波が観測されるのでしょうか。その温度に応じた黒体放射が観測されると思いますか。 (3) 電磁波を吸収・放出するためには、離散化されたエネルギー準位が必要と思われます。しかし、ヘリウムやアルゴンなどの単原子分子の場合、振動、回転といったモードは考えづらく、かといって並進運動はエネルギー準位が非常に小さいために、電磁波として放出される波長は検出できないくらいの長い波長になってしまうのでしょうか。また、それはドブロイ波になるということでしょうか。 (4) 黒体放射の電磁波は並進エネルギーからも出ているのでしょうか?並進運動は、直接、電磁波を吸収したり、放出したりすることはできるのでしょうか。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数679
  • ありがとう数1

みんなの回答

  • 回答No.1

Wikipediaによると「黒体(こくたい、Black body、あるいは完全放射体)とは、外部から入射する熱放射など(光・電磁波による)を、あらゆる波長に渡って完全に吸収し、また放出できる物体のこと。完全な意味での黒体(完全黒体)は現実には存在しない。」とあります。 質問が“黒体”輻射に関するものであれば、質問はナンセンスです。この世に存在しないものなので、内部構造などわかりません。むしろ現実的なエネルギー準位構造で全ての波長の光を発することは無理でしょう。 もし質問が“熱”輻射に関するものと解釈すると、 「(1)物質を熱するといわゆる振動や回転などの状態が励起され、電磁波を放出するということなのでしょうか」 それもあるんじゃないでしょうか。効率は悪いかもしれませんが、電子励起状態も並進運動もありじゃないですか。 「希ガスは...電子準位しかない。」 電子準位からの放射になるでしょう。その場合、放射スペクトルは黒体輻射から大きくずれるでしょう。要するに希ガスは黒体で近似するのが難しいということでしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。黒体放射は例としてミスリードだったと思います。私の疑問は一般的によく言われている「あらゆる物質は赤外線を放出している」ということに対して、それは本当かということです。 たとえば、ある温度における希ガスの赤外放射スペクトル(あるいはサーモグラフィー)を測定したとしたら、その温度に対応した電磁波は果たして観測されるのかということです。 希ガスのように電子状態以外に電磁波を吸収したり放出することが余り出来ないような分子の場合だと、必ずしも、全ての物質が赤外放射をしているというのは誤りではないかと思ったのです。 >効率は悪いかもしれませんが、電子励起状態も並進運動もありじゃないですか。 電子状態はいいとして、並進運動からも電磁波が放出されるなんてことはありうるのでしょうか。並進運動はエネルギー準位が小さすぎるために、一般的には連続した運動として観測されていると思います。微小空間に閉じ込めたり、何かに束縛したりしなければ、電磁波を吸収・放射するための離散化したエネルギー準位としては、限りなく小さいものになると思いますが...。

関連するQ&A

  • 大気による放射の吸収

    初歩的な質問かもしれませんが、よろしくお願いします。 大気は、太陽からの放射(電磁波)を吸収します。 それは、大気の中の物質の特徴、細かく言えば、 各分子・原子のもつエネルギー準位に対応した放射を吸収します。 振動モードだったり、回転モードだったり、いろいろなエネルギー準位が ありますが、それらに対応した吸収をします。 また、吸収したエネルギーを電磁波として放出したりもします。(赤外放射) それは、吸収と同様にエネルギー準位に対応した放射をしそうです。 そこで、質問です。 これと黒体放射はどのような関係にあるのでしょうか。 放射の仕方は、各物質のエネルギー準位に対応するように思うのですが 黒体放射に従うならば、各物質のエネルギー準位など関係なく温度のみに 依存するはずです。 各物質が、完全な黒体ではないとしても、赤外放射が黒体放射でよく近似できるのは事実だと思います。どう考えればよいのでしょうか。

  • 黒体の特徴および黒体放射の特徴

    黒体の特徴および黒体放射の特徴について書け、という問題があります。とりあえず自分が思いつくのは 黒体の特徴:あらゆる電磁波を吸収してしまう 黒体放射の特徴:放射される電磁波は連続スペクトルであり、高温になればなるほど放射される電磁波の波長は短くなってしまう ということですが、他に何か書いておくべき特徴はあるでしょうか? 些細なことでも結構ですので、このほかに書くべき特徴があれば教えていただけたら幸いです。 よろしくお願いします。

  • 黒体放射と輝線スペクトル

    原子が出す光については核の周りの電子が内側の(低エネルギーの)軌道に移動するとき、その エネルギー差に相当する波長の光が出るという説明で、それなりに納得できます。 では、黒体放射の連続スペクトルは、原子や分子のどこからどのように出てくるのでしょうか?ヘリウムや水素分子(H2)などの小さな原子や分子も温度に応じていろいろな波長の電磁波を出していると思うのですが、その電磁波は電子から出てくるのでしょうか、核から出てくるのでしょうか?どうして「連続」スペクトルになるのでしょうか?

  • 黒体について

    『物体が熱せられることにより、物体を構成する粒子が励起され、光を放出し、それを再び吸収するというサイクルが繰り返され、熱平衡状態に達するためである。放射する全ての波長の光を完全に再吸収するぶったいを黒体という』とありますが、光を再吸収するのになぜ光るのですか? 光を出してるってことはエネルギーを出してることですよね?どこから供給してるのですか?

  • 熱放射(輻射)の基本的なことを教えてください

     熱放射で出される電磁波は、人体や地球放射などは赤外線領域で、赤外線を熱線と呼んだりするかと思いますが、太陽では熱放射として可視光や紫外線が出ていると思います。この場合でも、熱放射の出るミクロな場面では、分極した分子の運動ととらえてよいのでしょうか。  吸収の場面では、紫外線は電子遷移や光解離として吸収されますが、放射の場面でも同じ仕組みで、電子遷移なのでしょうか。光解離で放射というのは、考えにくいように思いますが、、、  黒体放射のスペクトルが、温度によっては、UVから可視光、赤外線となめらかなカーブになりますが、これは、同じ放射の仕組みによるのでしょうか。あるいは、波長域でよって、核融合だったり、電子遷移だったり、双極子モーメントの運動だったり、もとの反応は様々でもエネルギーとしてはなめらかに曲線になるのでしょうか。  少し違う話ですが、あらゆる物体は温度に応じた電磁波を出す、とよくいわれますが、大気中の窒素や酸素など双極子モーメントをもたない気体分子も、温度におうじた電磁波を出しているのでしょうか。  CO2やH2Oなど気体分子が吸収のピーク波長をするどく持つのに対し、多くの固体は黒体に近似できる場合が多いようですが、固体では、さまざまな分極した分子の運動が生じうるからということなのでしょうか?  また、最初の質問と少し、だぶりますが、固体の温度が上がり、赤外線から可視光にかわるときには、固体のなかでの電磁波を発する仕組みも違うものになるのでしょうか? あるいは、いつでも、原子や分子の熱運動といっていいのでしょうか。  とりとめのない質問になってしまいましたが、可能な部分だけでも、教えていただけましたら助かります。

  • 電子配置

    (1)H2S、(2)NH3のそれぞれの分子間の各原子の電子配置についてどの希ガスに似ているかと考えた場合(1)HはヘリウムSはアルゴン、(2)NはネオンHはヘリウム で良いのですか?

  • 窒素や酸素の赤外線の吸収・放射は?

     温室効果ガスとされる二酸化炭素やメタンなどが、地球放射の赤外線を吸収し、放射していることが現在の気候変動の要因とされているのだと思います。  一方、「すべての物質は温度に応じて電磁波を放射している」と聞いたことがあるのですが、とすると、窒素や酸素も赤外線(あるいは、もっと波長の長い電磁波)を放射しているのでしょうか。  窒素や酸素も電磁波を吸収、放射しているけれど、その吸収帯が、太陽放射や地球放射と重ならないので、温室効果と関係ないだけだとすると、酸素や窒素が吸収・放射している電磁波の波長はどのくらいなのでしょうか。  放射の基本的なことがわかっていなくて、ご存知の方、教えていただけましたら、うれしいです。

  • 黒体の性質が分かりません

    キルヒホッフの法則の証明で,黒体面(単色放射能E(T,λ))に囲まれた閉空間があって,その中に実在面(単色放射率ε(λ),吸収率α(λ))を有する小物体があり,熱平衡状態である状況を考えています. 黒体面からの輻射が入射したとして,その波長λ成分の入射強度はE(T,λ)なので,その成分から受け取る輻射エネルギーは吸収率α(λ)を掛けて,α(λ)E(T,λ)となります.一方,小物体の放射のうち波長λ成分の強度はε(λ)E(T,λ)ですが,熱平衡であるためには各波長成分に対して受け取ったエネルギーと放射するエネルギーは等しくなければならないので,α(λ)E(T,λ)=ε(λ)E(T,λ).よって,α(λ)=ε(λ)(キルヒホッフの法則)という説明がなされています. では逆に,実在面で囲まれた閉空間内に黒体面を有する小物体があったとします.実在面からの輻射の波長λ成分はε(λ)E(T,λ)であり,これが黒体面を有する小物体に入射したとします.黒体面の吸収率は1なので,受け取るエネルギーはそのままε(λ)E(T,λ)です.一方,小物体の輻射の波長λ成分は,これが黒体面なのでE(T,λ)そのものです.上の証明に倣えば,熱平衡のためにはこれらが等しくなければならないので,ε(λ)E(T,λ)=E(T,λ).よって,ε(λ)=1でなければならず,あらゆる実在面の単色放射率が1,つまり実在面=黒体面になってしまいます. これはなぜでしょうか.そして,次の点についてあっているかどうか教えてください. 黒体の単色放射能は温度と波長が決まれば決まり,周囲の状況によらず常にその強度で放射する.

  • 分子エネルギー準位の下降

    分子の固有振動エネルギーと等しいエネルギーが外力によって加えられたとき分子のエネルギー準位が励起されるのは分かったのですが、エネルギー準位が下がって、熱や光が放出されるのはどういうときに起こるのでしょうか? あとエネルギー準位が下がって放出されるのが、熱あるいは光というのは物質によって異なるのでしょうか? よろしくお願いします。

  • 宇宙が黒体であるとは?

    宇宙の3度Kの黒体輻射について教えてください。 黒体とは、あらゆる光を吸収してしまい熱平衡を維持する一方、 その保有するエネルギー量に応じた固有の光(電磁波)の輻射を行う 仮想の物体と理解してきました。 現実には、これと近いものとして、 ブラックホール(吸収だけを行う)や太陽(吸収とともに、熱輻射も行っている)など があると、理解してきました。 そこで、宇宙の3度Kの黒体輻射ですが、次のふたつの疑問がいつも頭をよぎります。 1.宇宙の3度Kの黒体輻射という言い方をするのは   輻射のスペクトル分布をみると、プランク分布とぴったり合致する事実があり、   つまり、これは黒体のスペクトル分布と同じだ!   だから宇宙は黒体のように考えることができるのだ!   と、こういう意味なのでしょうか?      昔の宇宙は、理想的な黒体のように、熱を吸収したり、輻射したりしていたわけではわけではなく   単に熱平衡の分布状態が、黒体のプランク分布と同じだったに過ぎない!   というわけです。      こういう、理解の仕方でいいんでしょうか?    2.かって宇宙全体が熱平衡にあり、膨張によって、エネルギー密度が下がったため   何百度K、何千度Kあったものが、いまは3度Kになってしまい、   それが背景輻射として観測されるのだ!   ということと理解しています。      しかし、宇宙全体をまるで何かの容器のように見立て   その容器のなかでの熱平衡を語る、というのは、なにか変に感じます。   なぜなら、宇宙には果てなどないわけで、   閉じた容器のように考えるわけにはいかないのでは?   と思うからです。      宇宙の黒体の記述を読むと   いつも、果てのある閉じた宇宙(まるで容器のような)を前提に議論しているように見える   のは私の勘違いでしょうか?    以上、ふたつの疑問にお答えいただけるとと幸いです。