• ベストアンサー

ブロッホの定理とは何を証明してるのですか?

数式で色々と計算して波動関数の周期性を説明しているのだと思いますが、ブロッホの定理は結局何を意味しているのでしょうか。結晶のように周期ポテンシャルが存在すれば、そりゃあ電子の波動関数も周期的に分布するのでは?と、素人の浅はかな考えを持ってしまっていて、定理の意味やその重要さが見えないままでいます。 どなたかブロッホの定理が示す意味・ブロッホの定理のおかげ可能になった事・理論or工学への貢献などを教えてもらえませんか。

質問者が選んだベストアンサー

  • ベストアンサー
  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.8

基本並進ベクトル分だけ波動関数を平行移動した時に、もとの波動関数にならなくても位相因子がずれる分には同じ状態である事に変わりはないので何も問題ないんですよ。そしてその位相因子がどういう形になるかを言っているのがBlochの定理です。

bad_dokinchan
質問者

お礼

意味がよく分かりました。有難うございました。

その他の回答 (7)

  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.7

波動関数そのものは必ずしも結晶と同じ周期性は【持たない】のですが、この点を誤解されていませんか。

bad_dokinchan
質問者

補足

結晶中においても波動関数が結晶と同じ周期性を持たない事があるのは知りませんでした。 質問のテーマとはズレますが、それはどういう場合の時なのか教えてもらえませんか?

noname#189502
noname#189502
回答No.5

波動関数の周期性を保証する範囲はどの辺までだと思いますか?

回答No.4

No.3さん、それはごもっともですが、そもそも論で説明に結晶内の電子を波動的に扱うという仮定が抜けてる。 電子の粒子性と波動性から出発して、古典論と量子論の違い比較をさせないと一向に「理解した」とは言い難い。 結晶内では波動として扱いが、それが周期ポテンシャルを持つ場合と持たない場合の両方を説明できますか? ここで根幹を理解させずに進むのが、教える側と学ぶ側双方の問題だと思うのですが。

回答No.3

ブロッホの定理は、bad_dokinchan さんがおっしゃった”結晶のように周期ポテンシャルが存在すれば、そりゃあ電子の波動関数も周期的に分布するのでは”という考えを数学的に厳密に証明したものです。 たとえば周期的な構造をもつものとして、塩化ナトリウムや金属等の結晶が挙げられます。 この結晶全体(肉眼で見えるくらいの大きさのもの)の波動関数を求めるとき、ブロッホの定理が存在しなければ、すべての原子(10^23オーダー)を考えなければなりません。そのため計算が膨大になり、現実的に解けない問題になります。 ここでブロッホの定理を用いると、波動関数に周期的境界条件という強力な制約がかかるため、結晶中の単位胞の中の波動関数だけを考えれば、結晶の全体の波動関数が分かるので、10^23オーダーの数の原子からなる結晶の性質を理解することができます。これがブロッホの定理の重要な働きの1つです。 具体的な応用例では、第一原理計算という物性を予測するための計算にブロッホの定理が絶大な働きをしています(というかブロッホの定理がなければ結晶の物性の予測はほぼ不可能です)。 No1の方がおっしゃるように、そのような疑問は本来、本やインターネットを通じて自分で調べていくべきものです。特に大学で学んでいることは専門的な内容であり、研究室に入るとまだ分かっていないこと、新しいことを自分で論文で調べ解釈していくようになるため、自分で学んでいく力が必要になります。 抽象的な理論をどう現実の現象や、実際の応用に活かしていけるのかを考えることは理系の人間でなくとも必要な力なので、自分で考える癖をつけていき、それでもわからなかったら他人に意見を求めていきましょう。

回答No.2

No.1ですが、意地悪したくて言っているわけではありません。 単にどこまで考えてこういったことを言っているか知りたいのと、あなた自身の質問の意図を汲み取りたいだけです。 ブロッホの定理があると仮定したときの世界と無いときの世界の二つを考察して欲しい。 ブロッホの定理は数学的だが、それが必要とされる理由、なければならない理由を学ぶ上で必要だからです。 物理はどうやって発展してきたかを知ってもらうことで、こういった質問を減らしていきたい。

bad_dokinchan
質問者

補足

回答ありがとうございます。 質問内容はブロッホの定理の意味が分からないので教えてくださいというよりは、その定理の重要性を教えて欲しいという事です。 例えば三平方の定理は【直角三角形の2辺a,b、斜辺cの間にはa^2+b^2=c^2が成り立つ。】という物ですが、この仮定からすぐに「a^2+b^2=c^2が成り立つのは当然でしょ」と容易に結果を想像できる人はあまりいないと思います。補助線を引いたり、図形を描いたりと色々な証明方法があると思いますが、その結果としてa^2+b^2=c^2の関係式を導き出し確かに成り立つ事を確かめています。その定理が確かに成り立つので、直角三角形を考える事により色々な長さを求める事が出来るようになったと思います。 ですが今回の場合ですと、結晶のように周期を持つ構造ではブリルアンゾーンと同様に1つの単位胞を考え、それが周期的に並んでいるだけという前提のように捉えていたので、ならば波動関数も周期的に存在するだろうと考えていました。つまり自明とまでは言えませんが仮定から結果が既に見えてしまっていたということです。1+1=2が成り立つのは当然であって(代数学の世界の上では分かりませんが)一々証明しないのと同じように、仮にブロッホの定理があっても無くても、波動関数も周期的に分布するのは周知(前提)であると思い込んでいたために、長々と計算をしてまで証明するほど重要な事とは思えず、ブロッホの定理の価値が分からなかったので質問させてもらいました。 電子の波動関数も周期的に分布するという事を数学的にも保証しているのがブロッホの定理という物ならそれでスッキリします。ただ、初学者の浅知恵や思い込みのせいで定理の重要性やもっと深い意味などを見落としているのかもしれないと思ったので質問した次第です。

回答No.1

じゃあブロッホの定理がないと仮定した場合を考えればいいだけです。 ブロッホの定理がある場合と無い場合の違いはなんですか? 周期ポテンシャルを仮定しない場合はどうなるんですか? そういった話がわかった上での質問ですか? (補足してください)

関連するQ&A

  • 化合物のブロッホの定理?

    ブロッホの定理は単一元素の結晶についてだけ成り立つんでしょうか? たとえばGaAsなどの半導体の電子もブロッホ関数になりますか? もしよければ2種原子のブロッホの定理の証明(1次元でいいです)ど教えていただけたら幸いです。

  • 強結合近似とブロッホの定理

    強結合近似の波動関数がブロッホの定理を満たすということは参考書に書いてあったのですが、その理由が書いていませんでした。 なぜ強結合近似の波動関数がブロッホの定理を満たすのか、だいたいでいいので教えてください。

  • ブロッホの定理の波数kについて質問です!

    周期Rで周期的なポテンシャルV(r+R)=V(r) (R:格子ベクトル) の中の電子の波動関数の関数形がΨ=Uk(r)*exp(ikr)となる というブロッホの定理ですが、誘導過程でなぜexp(ikr)が出てくるのかが疑問です。 「半導体の物理」(御子柴先生:産業図書出版)のP36に証明があるんですがそこでは|λ^2|=1なλならなんでもよく(exp(ikr)とする必要はなく)kになぜ波数としての役割を与えるのかが示されていません。導出の過程ではkは波数でなくてもいいはずです。数学的にすっきりとブロッホ関数が平面波×周期関数の振幅になることを導きたい! わからないんです!お願いします汗

  • 有効質量

    こんにちは。大学四年の者ですが、研究室のゼミで発表をしていたところ、「有効質量」という言葉が出てきてさらっと流そうとしたら、 あいにく教授がドSなもので、「有効質量の物理的意味を誰でもわかるように詳しく教えてよ。」と言われました。 私が調べた限りでは、 「結晶中の伝導電子が持つ実効的な質量であり、固体内の電子は結晶の周期ポテンシャルの影響を受けて運動しエネルギーギャップをつくるので、自由電子とは一般に異なる。 結晶中の電子の波動関数は真空中のそれと違って、エネルギーと波数ベクトルが異なるので、結晶中の電子の運動に現れる質量は、真空中のそれとは異なる。」(引用:物理学辞典、理化学辞典) などと記述されておりました。 なんとなく分かるような気もするのですが、教授に突っ込まれても答えられるように理解を深めておきたいので、 どなたか「有効質量」について分かる方、どうぞよろしくお願いいたします。

  • チェビシェフの定理、大数の法則、中心極限定理の関係

    チェビシェフの定理、大数の法則、中心極限定理の3つの用語によって、統計的推測の理論的骨子について説明するっていうのは、どうやって説明すれば良いのでしょうか?教えてください。とりあえず、数学が苦手なのですが2つの意味は調べました。でも、数式を使った説明は分かりません。 チェビシェフの定理 データの平均から離れるにしたがって、だんだん、滅多に起こらない現象の割合が増える。このことを表したのがチェビシェフの定理である。 大数の法則 ある確率を測るとき、試行回数を増やせば増やすほど、正確な確率に近づく法則を、大数の法則と言う。 中心極限定理 (説明の中に、正規分布などという、意味がわからない語句がたくさんあったので分かりませんでした) こんな感じで調べてみました。中心極限定理の意味も教えて欲しいです。 あと、チェビシェフの定理によって大数の法則が導かれ、大数の法則によって中心極限定理が導かれるのはどうしてですか? なんだか質問が多くなってしまって申し訳ありませんが、できたら教えてください。できるだけ、難しい語句や数式的なことは避けて説明していただきたいのですが、よろしくお願いいたします。

  • 三角関数の近似の問題

    三角関数の近似の問題 以下式の(1)式に(2)式の条件を適用すると、(3)式のように近似できます。 しかし、なぜ(3)式のように近似できるのかわかりません。 ちなみに、これは量子力学における1次元の束縛状態の、 ブロッホの定理を使って周期的ポテンシャルの中のエネルギーバンドを 求める問題の中で出てきました。

  • 結晶のバンド構造(電子のエネルギー分散)

    不規則合金の電子状態について勉強しようと思っているのですが、それ以前の完全結晶(規則相)のバンド構造でつまずいております。 我ながらどこで引っかかっているのか把握できていないので、疑問に思った経緯を順に書きます。 長文をご容赦ください。(なお文中のh~は換算プランク定数です。) 純金属の電子のエネルギー分散図は細い線(バンド)が連なったものになります。 これに対してKKR-CPA法から計算した不規則合金のエネルギー分散をプロットすると、それぞれの線がにじんでしまったものが得られます。 この事について赤井久純/白井光雲「密度汎関数法の発展」では以下のように書かれています。 ”これは印刷の失敗でも汚れでも無くて、まさに不規則性の効果があらわれたものである。Niの場合は系が規則的なために結晶運動量h~kがよい量子数となって固有エネルギーを決定するのに対して、Ni0.85Mn0.15合金では系がもはや規則的ではないために結晶運動量h~kについて固有状態が得られずブロッホスペクトル関数が広がってしまうのである。” この文章を読んで一旦は「不規則合金では波動関数がブロッホ波で表せなくなるからエネルギーと運動量の同時固有状態が実現できなくなるのか」と納得しかかったのですが、よく考えれば規則・不規則は関係なく結晶中ではハミルトニアンと運動量演算子は交換しません。 そうか、ハミルトニアンと交換しないのか、、 http://teenaka.at.webry.info/200704/article_21.html もし「不規則合金では、波数とエネルギーが同時固有状態をとれないからバンド構造がにじむ」のだとすれば規則結晶であっても運動量とエネルギーは同時固有状態をとれないのだから、やはりバンド構造はにじまなければならないのではないでしょうか? おかしいなと思い(規則結晶の)ブロッホ関数に運動量演算子を作用させて、運動量の固有値が得られるか確かめてみたのですが、ポテンシャルを含む項が残ってしまい p=h~k と考えてよいのかどうかも分からなくなり、更に混乱してしまいました。 バンド描像 http://www.molecularscience.jp/research/4/4_3.html 上記URLでは”このように,結晶中の電子の運動量を考えると余計な項がついていて面倒に思えますが,実際の 散乱過程や,電場・磁場への応答を考える場合,h~kが運動量である,として話を 進める事が可能です.”と書かれていますが、これがなぜなのかもわかりません。 どうも「固有状態」「交換関係」「良い量子数」「運動量と波数の間の関係」といったものがすっきりと理解できていません。 (1)波動関数に運動量演算子を作用させたときにポテンシャルを含む項が残ってしまうにもかかわらず p=h~k と考えてもよいのはなぜか? (2)上記の関係は不規則合金でも成り立つか? (3)運動量とエネルギーが同時固有状態にならないにもかかわらず、規則結晶のバンド構造がにじんでいない細い線として表されるのはなぜか? 以上三点のうちどれか一つでも構いませんので教えてください。 また、全般を通してアドバイスがあればお願いします。

  • 調和振動子の波動関数

    調和振動子のポテンシャル中にある相互作用していない2つの電子において量子数nのエネルギー固有状態を記述する波動関数ψn(x),スピン波動関数をφ^{±}とする。 I基底状態Etot=2*E1を記述する2電子波動関数を全てもとめよ II第一励起状態Etot=E1+E2を記述する2電子波動関数を全てもとめよ 上記の問題を考えているのですが,スレーター行列式に代入するとどちらも波動関数が0になって解が求まりません。 どのようにとけば2電子波動関数を求められますか?

  • 粒子の波動性について

    ちょっと確認なんですが例えば電子は波の性質を持っていますがその波というのは 確率の波なんですよね。電子が波打って動いてるわけではないんですよね? それと井戸型ポテンシャルの問題ですがあれで求めた波動関数は ポテンシャルが0の領域に電子を置いた時の位置を確率で表したものなんですか? 今だにしっくりわかっていません。お願いします。

  • 固体中で原子核はトンネルしますか?

    量子力学で波動関数といった時に、一つの電子に対して考えるのが通常(?)の量子力学ですが、陽子の波動関数というのもあるそうですね。 また2つの電子の波動関数は、個々の電子に関する波動関数のテンソルで表せましたが、それと同じ様に考えれば一つの原子核を対象とした波動関数は定義できる様に思えます。 なのでそのとき原子核の波動関数を支配する方程式はシュレーディンガー方程式であることに変わりはないということを考えました。 ここで質問したいことは、この議論は正しいのでしょうか?という点と、 またもしそうならば、金属などの固体中で原子核が電子の作るポテンシャルに対してトンネルすることもありうるのでしょうか??という点です。 これを定性的に考えると、原子核と電子との相互作用で電子よりも原子核のほうが「動きやすい」状況が必要だと思うのですが、この時の「動きやすさ」とは何なのでしょうか?電子がたくさんのバンド構造を持てば電子は「動きにくい」と考えてよいのでしょうか?また、そのような状況はありえますか? 部分的な回答で十分なので、どうかよろしくお願いします。