波動方程式の解→横波

このQ&Aのポイント
  • 波動方程式の解として、横波の一般解を求める方法と、縦波であるかどうかを証明する方法について説明します。
  • 横波の一般解は偏微分方程式を変数分離法で解いて求めることができます。
  • 横波の特徴は、電場と磁場が互いに直交することです。この特徴から、波が横波であることを証明することができます。
回答を見る
  • ベストアンサー

波動方程式の解→横波

真空中を伝わる電磁波、E=(E_x,E_y,E_z), H=(H_x,H_y,H_z)には、 ∇×E=-μ∂H/∂t, ∇・E=0, ∇×H=ε∂E/∂t, ∇・H=0 が成り立っている。 (∇^2-εμ∂^2/∂t^2)E=0 の3次元の一般解を求め、波が縦波であるか証明せよ、最後にこの結果から言える物理的現象を記述せよ。 初期条件は書かれていないので、一般解は偏微分方程式を変数分離法で解くとそのまま文字が残って、 E=((A_1)cosω′t+(A_2)sinω′t)×((B_1)cos(ω_1)x+(B_2)sin(ω_1)x)×((C_1)cos(ω_2)y+(C_2)sin(ω_2)y)×((D_1)cos(ω_3)z+(D_2)sin(ω_3)z) となりますが、ここから横波であることを証明するにはどうすればいいのでしょうか? それとも、指数形で答えを出した方が考えやすかったですかね? また、最後の物理現象ですが、「電場と磁場が互いに直交する」ということだと思ったんですが、この解から言えますか? 教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.3

まず修正です。 >v: 波の速度ベクトル。 vはスカラーでした(^^; E ですが、これは特定方向に任意形状のベクトル場が特定方向に向かう解が知られています。 私の示した解が波動方程式を満たすことはお分かりになると思います。 議論は横波かどうかという話でしたので、このような波に進行方向の変化成分が無いことを示しました。 より一般的な形状の波に対して、横波か縦波か示す方法は知りません。 多分もっと微分的な取り扱いが必要です。

その他の回答 (2)

回答No.2

>波動を E = A(e・r - vt) 式の記号の解説を忘れてました。 r: 位置ベクトル。e: 波の進行方向を表す単位ベクトル。 v: 波の速度ベクトル。t: 時刻。E: 電場

oomukashi
質問者

補足

E = A(e・r - vt) ということは、変数分離で求めた一般解をこの形で表せれば、証明は出来るということですね。

回答No.1

波動を E = A(e・r - vt) とすると、電磁波だから電場の発散は 0 なので div E = e・grad(A) = 0 だから関数A は進行方向に対して変化が無い電場⇒電場の変化は進行方向に垂直⇒横波

関連するQ&A

  • (∇^2-εμ∂^2/∂t^2)E=0を解く

    真空中を伝わる電磁波、E=(E_x,E_y,E_z), H=(H_x,H_y,H_z)には、 ∇×E=-μ∂H/∂t, ∇・E=0, ∇×H=ε∂E/∂t, ∇・H=0 が成り立っている。 (∇^2-εμ∂^2/∂t^2)E=0 の3次元の一般解を求め、波が縦波か横波であるか証明せよ、最後にこの結果から言える物理的現象を記述せよ。 この問題を教えてください。 物理学カテでも同様の質問をしたりネットで調べたりして、後半の物理学の知識を使った証明については、どうすればよいのか分かったんですが、「解がこのように(sinやcosやexp)おけるので」ということで、スタートさせていました。 工学部の大学院入試なんですが、数学科目の問題であるため、これでは厳密性にかけると思うので、解をどのようにおけばよいのか教えてください。 自分が 混乱している点 電磁波には球面波、平面波があるが、どちらか記述がないので、球で考えるか円筒で考えるかが分からず、文字の置き換え•近似は出来ない。 →球面と平面の場合で分けて考えるか、もっと一般的にダランベールの解から行くか。 偏微分方程式を変数分離で解いてみたが、境界条件や初期条件がないため、項が簡単にならず、縦波か横波かの証明で狙った答えが得られず。 →フーリエ級数展開までいく必要はないので、もっとシンプルに解けるのではないか。

  • 波動方程式の解

    電磁界の平面波に関する問題で偏微分方程式を 解く必要がでてきたので質問させていただきたいのですが、 ∂^2Ex/∂z^2=εμ∂^2Ex/∂t^2 の波動方程式の解は未定係数法により Ex=Ae^{jωt}e^{jβz}とおいて解くと、 β=ω√(εμ)とし、Ex=Ae^{jβz}となりますが、 これから、もう1つの偏微分方程式 -∂Hy/∂z=ε∂Ex/∂tから、Hyを求めたいのですが、 この偏微分方程式はどのように解いたらいいのでしょうか?答えは、(ω/β)εExとなるそうですが、途中の過程が 分からなくて・・・。 また、最初の偏微分方程式において解の形をA,βを未知数として、Ex=Ae^{jωt}e^{jβz}とおく未定係数法以外の方法で解く手段はあるのでしょうか? よろしければ回答お願いいたします。

  • この方程式って解けますか?

    この方程式って解けますか? ( e1x, e1y, e1z ) ( e2x, e2y, e2z ) がわかっているとして、Φ、Ψ、θの値を求めたいのですが・・・ この方程式って解けますか? 解き方を教えてくださいm(_ _)m 下記のとおりです。 f(Φ、Ψ、θ)=cosΦ*cosΨ*e1x - sinΦ*cosθ*sinΨ*e1x - cosΦ*sinΨ*e1y - sinΦ*cosθ*cosΨ*e1y + sinΦ*sinθ*e1z - e2x = 0 g(Φ、Ψ、θ)=sinΦ*cosΨ*e1x + cosΦ*cosθ*sinΨ*e1x - sinΦ*sinΨ*e1y + cosΦ*cosθ*cosΨ*e1y - cosΦ*sinθ*e1z - e2y = 0 h(Φ、Ψ、θ)=sinθ*sinΨ*e1x + sinθ*cosΨ*e1y + cosθ*e1z - e2z = 0

  • 波動方程式の導き方

    電磁気学に関する質問です。次のように、z方向に伝搬定数βで進行し、角周波数ωで進行する波について E=E0(x,y)exp(jωt-βt)・・・(1) H=H0(x,y)exp(jωt-βt)・・・(2) 直交座標系(x,y,z)における波動方程式と円筒座標系(r,φ,z)における波動方程式を求めたいです。 (1),(2)式をマクスウェルの法則に代入して、x,y,z成分に関する式を求めて、式変形によりEx,Ey,Hx,HyをそれぞれEz,Hzを用いて導く事はできました。その後、どのような計算方法で波動方程式を求めればいいのかわかりません。できるだけ計算過程を詳しく教えていただけないでしょうか?よろしくお願いします。

  • 古典的波動方程式に関する式変形

    ある微分方程式の一般解である以下の式 x(t)=c1cosωt+c2sinωt を次のような等価な形式で表す。 x(t)=Asin(ωt+φ) x(t)=Bcos(ωt+ψ) この時、x(t)に対する3つの式が全て等価であることを示し、 AとφおよびBとψのそれぞれをc1とc2で表わす式を導け。 という問題があります。 x(t)=Asin(ωt+φ) sin(α+β)=sinαcosβ+ cosαsinβ sin(ωt+φ)=sinωtcosφ+ cosωtsinφ x(t)=Bcos(ωt+ψ) cos(α+β)=cosαcosβ- sinαsinβ cos(ωt+ψ)=cosωtcosψ- sinωtsinψ という関係を用いればよいのでしょうが、AとBの取り扱いがわからりません。どのように考えたらよいのでしょうか?

  • 波動方程式について

    物理でよく見かける簡単な波動方程式 y=Asin2π(t/T-x/Λ) があります。この式の意味はわかるのですが、この一般的な式になぜcosが入っていないのか、いまいち納得できません。 また、フーリエ変換を勉強しているとき、振幅の方程式で A(x,t)=A'cos{2π(t/T-x/Λ)} という式がでてきました。これにはなぜsinが入っていないのでしょうか。 y=A(sin~+cos~)というような式であった方がいろんな波を表される気がするのですが・・・。どちらか片方で都合がよい理由などがもしあるなら教えてください。よろしくお願いします。

  • 波動方程式の解について

    電磁気学についての質問ですが、 平面はのTEモードの波動方程式 δ^2 Hz/δx^2 - δ^2 Hz/δy^2 + k^2 Hz = 0 (_は下つき文字 ^は上付き文字) の解が  Hz = H_0 exp(-jk sinθx + jk cosθy) となっているのですが、途中の導出方法がわかりません。 Webで調べると変数分離を使うところまではわかりましたが、これだと、三角関数の形で答えが出てきますが、 どうして、指数関数の形で解がでるのかを教えてください。

  • 方程式

    sinα+cosα=sinαcosαのとき、sinα+cosαの値を求める問題で sinα=X、cosα=Yとおくと (x^2)+(y^2)=1 x+y=xy x+y=ttookuto (t^2)-2t-1=0 t=1±√2 から ○ココでX+Y=t、XY=tと置くのが分かりません。 ○解と係数の関係を考えたのですが (u^2)-tu+t=0となりません。

  • 解を求めたいのですが・・・

    Maxwell方程式と物質方程式から、均質な物体では ∇^2E-(εμ/c^2)(∂^2E/∂t^2)=0 ∇^2H-(εμ/c^2)(∂^2H/∂t^2)=0 の波動方程式が得られますが、ところでこの解はどうすれば求められますか?

  • 偏微分方程式の解について。

    現在、私は3変数(x、y、z)2階の偏微分方程式を解いています。 その同次解を導いています。 まず、変数の一般解をΣX(r)*(cosmθ)、ΣY(r)*(cosmθ)、ΣZ(r)*(cosmθ)と仮定し元の式に代入したのち、r=exp(s)と変数変換します。 そして同次解の形をX=X'exp(λs),Y=Y'exp(λs),Z=Z'exp(λs)のように仮定し代入することによって、自明でない解をもつ次の特性方程式を得ました。 p^3+d*p+f=0 このときp=(λ^2-A)とします。 またAとdとfは定数です。 ここから解を導くのですが λ^2=p+A>0のときは、 X=F*exp(λs)+S*exp(λs)  =F*r^λ+S*r^(-λ) このときのF,Sは勝手においた未知数です。 とまずおきました。 次にXを既知だと仮定し、YとZの関係を求めるのですが、 関数型はXと同様のために、F=1として 同次解を仮定して代入した式で計算してYとZの関係を導きました。 (簡単な2次方程式を解く作業です) 同様にS=1としても行いました。 そこで以下の解を得ました。 Y=G(λ)*F*r^λ+G(-λ)*S*r^(-λ) Z=H(λ)*F*r^λ+H(-λ)*S*r^(-λ) G(λ)とH(λ)は2次方程式を解いて出した関係式です。 次がわからないところです。 λ^2=p+A<0の場合、つまりλの根が複素数の場合です。 上と同様に係数を比較して求めるのですが、 X=F*cos(λs)+S*sin(λs) と仮定するところまではわかりますが、 その仮定によって Y={Re[G(j*λ)]cos(λs)-Im[G(j*λ)]sin(λs)}*F +{Im[G(j*λ)]cos(λs)+Re[G(j*λ)]sin(λs)}*S となるのがわかりません。Zについても式の形は同様です。 本当に困っています。 意味がわからない文章かもしれませんが、汲み取っていただけると幸いです。 ヒントでもいいのでください。 ちなみに 実部については G(j*λ)=G(j*-λ)が成り立ち      虚数部については G(j*λ)=-G(j*-λ)が成り立っております。