• 締切済み

この方程式って解けますか?

この方程式って解けますか? ( e1x, e1y, e1z ) ( e2x, e2y, e2z ) がわかっているとして、Φ、Ψ、θの値を求めたいのですが・・・ この方程式って解けますか? 解き方を教えてくださいm(_ _)m 下記のとおりです。 f(Φ、Ψ、θ)=cosΦ*cosΨ*e1x - sinΦ*cosθ*sinΨ*e1x - cosΦ*sinΨ*e1y - sinΦ*cosθ*cosΨ*e1y + sinΦ*sinθ*e1z - e2x = 0 g(Φ、Ψ、θ)=sinΦ*cosΨ*e1x + cosΦ*cosθ*sinΨ*e1x - sinΦ*sinΨ*e1y + cosΦ*cosθ*cosΨ*e1y - cosΦ*sinθ*e1z - e2y = 0 h(Φ、Ψ、θ)=sinθ*sinΨ*e1x + sinθ*cosΨ*e1y + cosθ*e1z - e2z = 0

みんなの回答

  • nag0720
  • ベストアンサー率58% (1093/1860)
回答No.1

たぶん解けないでしょうね。(解なし、または、解不定) 示された式を、 cosΦ*cosΨ*e1x - sinΦ*cosθ*sinΨ*e1x - cosΦ*sinΨ*e1y - sinΦ*cosθ*cosΨ*e1y + sinΦ*sinθ*e1z = e2x sinΦ*cosΨ*e1x + cosΦ*cosθ*sinΨ*e1x - sinΦ*sinΨ*e1y + cosΦ*cosθ*cosΨ*e1y - cosΦ*sinθ*e1z = e2y sinθ*sinΨ*e1x + sinθ*cosΨ*e1y + cosθ*e1z = e2z と変形すると、これは、( e1x, e1y, e1z ) を回転して ( e2x, e2y, e2z )にする変換です。 回転変換なので、ベクトル( e1x, e1y, e1z )と、ベクトル( e2x, e2y, e2z )の長さが同じでなければなりません。つまり、 (e1x)^2 + (e1y)^2 + (e1z)^2 = (e2x)^2 + (e2y)^2 + (e2z)^2 この関係式が成り立ってなければ、解なし。 これが成り立っている場合は、 回転変換は、z軸で角度Ψの回転、x軸で角度θの回転、さらにz軸で角度Φの回転したものです。 この場合の回転角度は一意には定まりません。

関連するQ&A

  • 回転移動した平面の方程式

    右手系座標での平面 z = 0 を 方位角 φ ( y 軸正方向から見て時計回りを正とする)、 仰角 θ ( x 軸正方向から見て反時計回りを正とする)で 回転させたときの方程式はどのようになりますか。 2つの方法で方程式が一致しないので、 混乱しています。 方位角 φ の座標変換 x' = x cos φ - z sin φ z' = x sin φ + z cos φ 仰角 θ の座標変換 y' = y cos θ + z sin θ z' = - y sin θ + z cos θ 方位角 φ, 仰角 θ の座標変換 (←この辺りから間違っている?) x' = x cos φ - z sin φ y' = x sin φ sin θ + y cos θ + z cos φ sin θ z' = x sin φ cos θ - y sin θ + z cos φ cos θ 方法1 回転後の平面は z' = 0 であるから、平面の方程式は x sin φ cos θ - y sin θ + z cos φ cos θ = 0 方法2 平面 z = 0 の単位法線ベクトル n は (0, 0, 1) である。 座標変換の式にこれを代入すると、回転後の n は ( - sin φ, cos φ sin θ, cos φ cos θ ) であるから、n に垂直で原点を通る平面の方程式は - x sin φ + y cos φ sin θ + z cos φ cos θ = 0 回転放物面 z = ( x^2 + y^2 ) / ( 4 f )についても 方程式を得たいので、よろしくお願い致します。

  • 方程式の解き方

    アルファベット大文字 A~I の値が決まっている時、小文字「z」の値が決まれば、 下記方程式を使用し、小文字「y」の値が求まります。 その反対に、小文字「y」の値が分かっているときに、小文字「z」の求め方が分かりません。 色々展開し試みましたが、全く違う結果になってしまいます。 分かる方がいらっしゃれば、宜しくお願い致します。 a = z × A + B b = C ÷ z × 100 c = D ÷ ( b + E ) d = ((( 100 - a )÷ 100 × D )-( F × c - 1 )) × 100 ÷ G e = D - ( F + E ( b × a ÷ 100 ) )× c f = 1 - e × 100 ÷ G ÷ d g = d × ( 1 - f × G ÷ H × I ) y = g ÷ D

  • 波動方程式の解→横波

    真空中を伝わる電磁波、E=(E_x,E_y,E_z), H=(H_x,H_y,H_z)には、 ∇×E=-μ∂H/∂t, ∇・E=0, ∇×H=ε∂E/∂t, ∇・H=0 が成り立っている。 (∇^2-εμ∂^2/∂t^2)E=0 の3次元の一般解を求め、波が縦波であるか証明せよ、最後にこの結果から言える物理的現象を記述せよ。 初期条件は書かれていないので、一般解は偏微分方程式を変数分離法で解くとそのまま文字が残って、 E=((A_1)cosω′t+(A_2)sinω′t)×((B_1)cos(ω_1)x+(B_2)sin(ω_1)x)×((C_1)cos(ω_2)y+(C_2)sin(ω_2)y)×((D_1)cos(ω_3)z+(D_2)sin(ω_3)z) となりますが、ここから横波であることを証明するにはどうすればいいのでしょうか? それとも、指数形で答えを出した方が考えやすかったですかね? また、最後の物理現象ですが、「電場と磁場が互いに直交する」ということだと思ったんですが、この解から言えますか? 教えてください。

  • 方程式について

    お恥ずかしいのですが、幾つかの簡単な数学の問題の解き方や、回答が合っているかを確認したく投稿しました。 (1) xgの8%が3.6gである時、xの値を求めなさい。 A. x=45 (2)連立方程式 -4x-3y=-2 5x+4y=2 A. x=2 , y=-2 上記2問の回答は正しいでしょうか? また下記4問を解いていただけませんか?計算式も含め回答いただけると助かります。 (1)連立方程式(分数) (x/3)+(y/4)=10 (x/4)+(y/3)=11 (2)次の式を満たす角θの値を求めよ(0≦θ≦180°) (1) cosθ=1/2 (2) sinθ=√3/2 (3) tanθ=-1 以上となります。 お恥ずかしながら参考書等を開いてもあまりよく理解できなかった為、よろしくお願いします。

  • 偏微分方程式の解について。

    現在、私は3変数(x、y、z)2階の偏微分方程式を解いています。 その同次解を導いています。 まず、変数の一般解をΣX(r)*(cosmθ)、ΣY(r)*(cosmθ)、ΣZ(r)*(cosmθ)と仮定し元の式に代入したのち、r=exp(s)と変数変換します。 そして同次解の形をX=X'exp(λs),Y=Y'exp(λs),Z=Z'exp(λs)のように仮定し代入することによって、自明でない解をもつ次の特性方程式を得ました。 p^3+d*p+f=0 このときp=(λ^2-A)とします。 またAとdとfは定数です。 ここから解を導くのですが λ^2=p+A>0のときは、 X=F*exp(λs)+S*exp(λs)  =F*r^λ+S*r^(-λ) このときのF,Sは勝手においた未知数です。 とまずおきました。 次にXを既知だと仮定し、YとZの関係を求めるのですが、 関数型はXと同様のために、F=1として 同次解を仮定して代入した式で計算してYとZの関係を導きました。 (簡単な2次方程式を解く作業です) 同様にS=1としても行いました。 そこで以下の解を得ました。 Y=G(λ)*F*r^λ+G(-λ)*S*r^(-λ) Z=H(λ)*F*r^λ+H(-λ)*S*r^(-λ) G(λ)とH(λ)は2次方程式を解いて出した関係式です。 次がわからないところです。 λ^2=p+A<0の場合、つまりλの根が複素数の場合です。 上と同様に係数を比較して求めるのですが、 X=F*cos(λs)+S*sin(λs) と仮定するところまではわかりますが、 その仮定によって Y={Re[G(j*λ)]cos(λs)-Im[G(j*λ)]sin(λs)}*F +{Im[G(j*λ)]cos(λs)+Re[G(j*λ)]sin(λs)}*S となるのがわかりません。Zについても式の形は同様です。 本当に困っています。 意味がわからない文章かもしれませんが、汲み取っていただけると幸いです。 ヒントでもいいのでください。 ちなみに 実部については G(j*λ)=G(j*-λ)が成り立ち      虚数部については G(j*λ)=-G(j*-λ)が成り立っております。

  • 微分方程式の解について

    下記の問題を解く指針がわかりません。 ------------------------------------------------- f(x),g(x)がともに微分方程式 y''+y=tan(x) の解であるとき、 ア~エのうち f(x)-g(x) として妥当でないものはどれか。 ア.3e^(-x) イ.(√3)cos(2x) ウ.e^(ix) エ.2sin(x+(π/3)) ------------------------------------------------- 斉次形の解が、A,Bを積分定数として Ae^(ix)+Be^(-ix) となり、定数変化法を用いようとしましたが、 うまくいきませんでした。 微分方程式は解かなくてもよいのでしょうか? どなたかご教授下さい。

  • 方程式の移動について

    下記の方程式でXを求める式に変換したいです。 (A*X*B/C*cosD*E)+(((F+(A*X*B/C)-G)*B/C)*sin(tan-1(X-Y)/H)*I=M よろしくお願いします。

  • この方程式をエクセルで解くにはどうすればいいのですか?

    収束計算が必要と思われる下記の2つの方程式からX、Yを算出したいのですが、エクセルで式を作成する場合どうすればいいのでしょうか? どなたか、ご教示願います。 a*(X+b+c)=d*(X+Y) e/f*(g^2-f*h^2)*X=e*i^2*Y a=0.92 b=900 c=79.3 d=1 e=3.14 f=4 g=387.4 h=82.6 i=77.6 尚X、Yは計算機等で計算すると以下の数値となります。 X:174.1、Y:887.1 宜しくお願いします。

  • 特性方程式

    微分方程式で特性方程式を使う問題(y"-y'-y=0)で特性方程式よりλ=±iというのがでてくるのですが、これをオイラーの公式を用いて y=C1cos(x)+C2sin(x)で解が尽くせるとなるのがわかりません。 オイラー公式 e^(ix)=cos(x)+isin(x) e^(-ix)=cos(x)-isin(x)から答えは y=C1{cos(x)+isin(x)}+C2{cos(x)-isin(x)}で尽くせるというのなら納得がいくのですが、どうやって解のようになるのでしょうか?

  • 微分方程式に関する問題です。

    (dy/dx)^2 + 2(ytan(x))dy/dx = f(y) (*) f(y) = 0 とする。y = (cos x)^2 は、方程式(x)の一つの解である事を証明せよ。 ********************************************* という問題です。 y' = -2sin(x)cos(x) y'' = -2{(cos x)^2 - (sin x)^2} として(*)に代入したのですが、うまく0になりません。 どういうふうに計算すればよいのでしょうか? よろしくお願いします。