• ベストアンサー
  • 困ってます

整数の問題

 整数(?)の問題です。よろしく御指導下さい。 1)3つの自然数a,b,cがa~2+b~2=c~2を満たしている。このとき、a,bの少なくとも一方は偶数であることを証明せよ。 2)自然数はa,b,c,dはc=4a+7b,d=3a+4bを満たしている。 2-1) c+3dが5の倍数ならば、2a+bも5の倍数であることを示せ。 2-2) aとbが互いに素で、cとdがどちらも素数pの倍数ならば,p=5であることを示せ。. (2-1は解決済みです。2-2の方がよく分かりません)  尚、このような整数、約数、倍数、素数、互いに素 というような問題(例題)を扱った  参考書、WEB サイト等ありましたら、ご紹介いただければありがたいです。よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ピタゴラス数というのがあるのは、浅学の私は知りませんでした。 お陰様で、紹介していただいた文献を読んで問題の証明をすることができました。 とても勉強になりました。どうもありがとうございました。

その他の回答 (1)

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

2-2: とりあえず a と b について解いてみる.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ヒントをどもありがとうございました。a,bについて解いてみると、3c-4d=5の倍数、7d-4c=5の倍数 となり、c、dがpの倍数ならばp=5であることを導くことができました。最初何から手を付けるのか 見当もつきませんでしたが、ヒントのお陰でたどり着くことができました。 本当にどうもありがとうございました。

関連するQ&A

  • 整数の問題がわかりません

    a^2+b^2=c^2をみたす自然数(正の整数)a,b,cがある。ただし、a,bは互いに素でbは偶数であるとする。c+a=2p、c-a=2qとなる自然数p,qが存在し、pとqは互いに素であることを示せ。ここで、2つの自然数が互いに素であるとは、その2数の正の公約数が1のみであることである。 です。 条件からbが偶数ならa=奇数、c=奇数。という事ぐらいしか分かりませんでした・・・ 解答してもらえるとありがたいです

  • 数学B 整数

    自然数a,b,c,dは c=4a+7b, d=3a+4b をみたしているものとする。 (1) c+3dが5の倍数ならば2a+bも5の倍数であることを示せ。 (2) aとbが互いに素で、cとdがどちらも素数pの倍数ならば、p=5であることを示せ。  ただし、2つの自然数が互いに素とは、1以外の正の公約数をもたないことをいう。                                                    (千葉大)  (2)がわかりません。よろしくお願いします。  

  • 苦手な整数問題的な証明問題

    こんにちは 1浪生でございます。 この度は整数問題に関していくつか質問させていただきたく存じます。 質問1、3つの自然数a,b,cがa^2+b^2=c^2を満たしている。この時、a,b,cの少なくとも一つは3の倍数であることを証明せよ。 質問2、nは整数とする。n^3が偶数の時、nも偶数であることを証明せよ。 の2問でございます。 お時間の許す限り、宜しくお願い致します。

  • 整数問題

    aとbを2以上の互いに素な自然数とし、b個の自然数1,2・・・bまでの集合をNとする。 Nに属するjとkをそれぞれaでかけた数ajとakがbで割ったときにともに余りが同じのとき、j=kであることを示せ という問題で ajとakのbで割ったときの余りが同じだから (j-k)a=qb(qは整数) aとbは互いに素なのでj-kがbの因数でなければならない。 1≦j≦b、1≦k≦bなので -(b-1)≦j-k≦b-1 それで解説がここで1からb-1の数はbの倍数ではない、と書いているのですがなぜでしょうか? 理解できる方解説お願いします。

  • 整数の問題

    A、B、Cは自然数で、ABは偶数Bは奇数します。A^2+AB+B^2=C^2から、Aは8の倍数であることを示せ。 Aの倍数性を知りたいからAで固めて A(A+B)=C^2-B^2 とするのは、考え方として正しいですか?知りたいのはCでもある? また、模範解答は、上まで変形し、C^2が奇数なことを知ってからB=2K+1、C=2L+1として代入してますが、Cが奇数であることを知る前に、初めからそれを代入したらダメ(分かりにくい)なのですか?あとAもA=2Mなどとしてとにかく代入するのは下手ですか?質問ばかりですみません。整数の基本を教えてください。

  • 最大公約数 と 互いに素 の関係

    自然数aと自然数bの最大公約数=G  ⇒  自然数a=整数x × G  かつ 自然数b=整数y × G  かつ 整数xと整数yは互いに素 という定理について疑問があります 自然数a=整数x × G  かつ 自然数b=整数y × G  の部分は最大公約数の定義から明らかなのですが 整数xと整数yは互いに素 がなぜこう言えるのかわかりません 教えてください またこれは⇔はなりたつのでしょうか? また自然数a 自然数b ではなく 整数a 整数b といった場合には成り立つのでしょうか? ※ここでは「倍数」、「約数」とうは負の数まで考える定義を採用しています 例:6の約数=-6,-3,-2,-1,1,2,3,6

  • 整数の基本問題

    整数の基本問題です。 2つの整数ap,bpを考えます。(a,b,pは全て整数で、aとbは互いに素) ap,bpは両方とも整数dで割り切れます。 この時pはdで割り切れることを証明したいのですが、 どうすればよいでしょうか。 記号では以下のように表すとします。 d|ap・・・(1) d|bp・・・(2) (a,b)=1・・・(3)→ d|p それではよろしくお願いします。

  • 整数の基本事項

    ある整数がaの倍数でもあり、bの倍数でもあるとき、 (1)aとbが互いに素ならば、abの倍数 (2)aとbが1以外の公約数を持つならば、最大公約数の倍数という認識で正しいでしょうか? ★(2)はたとえばa=24,b=36ならば、その整数は((12×2)×整数)、(12×3)×整数)であることが保証されるので、12の倍数という思考で正しいでしょうか?

  • 整数問題

    正の整数a,b,cが 2a-3b=0・・・(1) 2a-5c=1・・・(2) を満たしている。 (1),(2)を満たすaの最小の正の値はアである。 また、(1),(2)より 2(a-イ)=ウ(b-エ)=オ(c-カ) が成り立つので、 a-イは2桁の整数キクの倍数である。 (1),(2)から 2a=3b 2a=5c+1 2aは偶数だから3bが偶数になるにはbが偶数であればよいからbの取り得る値はb=2,4,・・・・ 同様に5c+1が偶数になるにはcが奇数であればよいからcの取り得る値は c=1,3,・・・・ a,b,c,の対応表をb=6までつくったところ (1),(2)を満たすaの最小の正の値は3となりました。 これ以降が全く分からないので、どなたか教えて下さい。

  • ピタゴラス数にからんだ整数問題

    以下の問題を一応証明したのですが、論述に自信がありません。入試の採点でつっこまれそうなか所を指摘して欲しいです。(京大志望です) 自然数 a,b,c について,等式 a^2+b^2=c^2 が成り立ち,かつ a,b は互いに素とする。このとき,次のことを証明せよ。 (1) a が奇数ならば,b は偶数であり,したがって c は奇数である。 (2) a が奇数のとき,a+c=2d^2 となる自然数 d が存在する。 (1)  a,bをともに奇数とすると  i,jを任意の自然数として   a=2i-1   b=2j-1 とおける。  すると、   a^2+b^2=(2i-1)^2+(2j-1)^2       =4(i^2+j^2)+4(i-j)+2=c^2  よってcが奇数であるときc^2も奇数となるからcは偶数。  よって   c=2k とおく。  すると、   0=a^2+b^2-c^2    =4(i^2+j^2-k^2)+4(i-j)+2≡2(mod.4) となって不合理。  よってa,bがともに奇数とはなり得ない。  よってaが奇数ならばbは偶数以外ありえない。 (2)  m,n(m<n)を自然数として   a=n^2-m^2   c=n^2+m^2 とおく。  (a,cはともに奇数よりn,mのうち一方は偶数で一方は奇数)  以下題意をみたす任意のa,cがこのようにあらわせることを示す。  上の式をn^2,m^2について解くと   n^2=(c+a)/2   m^2=(c-a)/2 となる。  よって   n^2m^2=(c^2-a^2)/4=b^2/4  よって   b=2mn となる。  これはbが偶数であるという(1)に矛盾しない。  よって上のようにa,b,cを表現することに不合理はない。(ただしm,nは互いに素とする。でないとa,b,cが互いに素であるという仮定に反する)  またこれより題意をみたすとき   a+c=2n^2  よって題意は示された。 (2)のa,cがm,nであのように表現できるという証明で、とりあえず矛盾はなさそうだからOKと言うような論法になってしまっている気がするのですが… どうでしょうか?