• 締切済み
  • すぐに回答を!

苦手な整数問題的な証明問題

こんにちは 1浪生でございます。 この度は整数問題に関していくつか質問させていただきたく存じます。 質問1、3つの自然数a,b,cがa^2+b^2=c^2を満たしている。この時、a,b,cの少なくとも一つは3の倍数であることを証明せよ。 質問2、nは整数とする。n^3が偶数の時、nも偶数であることを証明せよ。 の2問でございます。 お時間の許す限り、宜しくお願い致します。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.6
  • zuihen
  • ベストアンサー率36% (4/11)

No.4の私の解答は間違っています。今気づきました。 (3m-2)は奇数とは限りませんね。すみません。 (3m-1),(3m-2)が3の倍数でないことを利用して地道に解くしかないかと。

共感・感謝の気持ちを伝えよう!

  • 回答No.5
  • zuihen
  • ベストアンサー率36% (4/11)

あ、失礼。対逆ではなく対偶です。 ちなみに、4028さん、解き方が間違っていると思います。 それではnが偶数→n^3が偶数の証明になってしまいます。逆です。

共感・感謝の気持ちを伝えよう!

  • 回答No.4
  • zuihen
  • ベストアンサー率36% (4/11)

同じく1浪です。お互い受かるといいですね。 まあ、こんなところで油を売っている私が言えた事でもないですが。 まず1についてですが、 a,bが同値関係ですので、 1. a-奇数 b-偶数 c-奇数 2. a-奇数 b-奇数 c-偶数 3. a-偶数 b-偶数 c-偶数 の3パターンに分けます。 奇数は「3の倍数でない」と仮定して矛盾を指摘します。 具体的に言えば、奇数を(3n-2)、偶数を(2m)のように置き換えて考えます。 これで1. 2.は解けます。 3についても偶数を2l,2m,2nのように置くと、 l^2+m^2=n^2 のように再帰的に等式が生成されます。 これもいつかl,m,nのいくつかが奇数になるので、それを1. 2.にあてはめると解けます。 質問2については、nを奇数と仮定して矛盾を解きます。 君の解き方は強引すぎると言われた事もありますので、参考程度に。 対逆の真偽は命題と等しい事を活用しましょう。

共感・感謝の気持ちを伝えよう!

  • 回答No.3
  • hiknht
  • ベストアンサー率0% (0/1)

質問2について、背理法を使ってみます。 n^3が偶数でnが奇数であると仮定すると、 n=2m-1 (mは整数)とおける。 よって、n^3=(2m-1)^3 =8m^3-12m^2+6m-1 =2(4m^3-6m^2+3m)-1 これはn^3が偶数であることと矛盾する。 よって、仮定は誤りであり、n^3が偶数ならば、nも偶数であることが示された。 どうでしょうか。

共感・感謝の気持ちを伝えよう!

  • 回答No.2
noname#250262
noname#250262

a,b,cの少なくとも3の倍数 →a,bの少なくとも3の倍数であればよい。  (a,b両方が3の倍数であれば、cは3の倍数でのは自明であるため) ここで、 a,bともに3の倍数でないとする。 a^2、b^2、c^2を3で割れば、あまりはともに、1となる しかし、a^2 + b^2 を3で割れば、あまりは、2となる。 質問2は、たぶん、対偶より自明ではないでしょうか。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • 4028
  • ベストアンサー率38% (52/136)

>質問1、3つの自然数a,b,cがa^2+b^2=c^2を満たしている。この時、a,b,cの少なくとも一つは3の倍数であることを証明せよ。 どれも3の倍数でないと仮定すると ・・・・・・ 矛盾する >質問2、nは整数とする。n^3が偶数の時、nも偶数であることを証明せよ。 n=2m (m:整数)とおく 代入してn^3=8m^3 mは整数なので n^3は偶数

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 整数問題の証明

    「ある整数n(n+2)が8の倍数ならばnは偶数であることを証明せよ。」 という問題で、この問題の解答を一応書いておくと、 「n(n+2)が8の倍数ならばnは奇数であると仮定すると、 n=2k-1(kは整数)とおいて、 n(n+2)=(2k-1)(2k+1)=4k^2-1より、 n(n+2)は奇数なので8の倍数になりえず矛盾。 ゆえにnは偶数である」 ですが、私は、 「n(n+2)が8の倍数ならばnは奇数であると仮定すると、 n(n+2)=8k(kは整数)と表せるので、 n^2=2(4k-n)となり、n^2は偶数だから、 nが奇数ならばn^2も奇数なので矛盾。 ゆえにnは偶数である」 と解いたのですが、これは解答として成立しますか? 違うのであれば具体的にどこが違うのかもお願いします。

  • 数1 整数の証明問題について

    整数nにおいて、n^2がAの倍数ならばnはAの倍数である という命題の証明問題がありますが、全ての整数がAに当てはまるというわけではなく、何か条件があるのでしょうか。 Aに9を入れると成り立たないなあと不思議に思って質問してみました

  • 数学A 整数の性質の証明について

    問題 nは自然数とする。n+3は6の倍数であり、n+1は8の倍数であるとき、     n+9は24の倍数であることを証明せよ。 この問題の解答は、 n+3,n+1は自然数a,bを用いて,n+3=6a ,n+1=8bと表わされる。 n+9=(n+3)+6=6a+6=6(a+1) ・・・(1) n+9=(n+1)+8=8b+8=8(b+1) ・・・(2) よって(1)よりn+9は6の倍数であり,(2)よりn+9は8の倍数でもある。 したがって,n+9は6と8の最小公倍数24の倍数である。 とこのようになっています。 ここで質問ですが、上の証明は自然数a,bを用いてnを表示していますが、 これを、整数a,bを用いてnを表示したら、不正解になってしまうのでしょうか。 理由も含め教えてください。よろしくお願いします。

  • 整数の問題

     整数(?)の問題です。よろしく御指導下さい。 1)3つの自然数a,b,cがa~2+b~2=c~2を満たしている。このとき、a,bの少なくとも一方は偶数であることを証明せよ。 2)自然数はa,b,c,dはc=4a+7b,d=3a+4bを満たしている。 2-1) c+3dが5の倍数ならば、2a+bも5の倍数であることを示せ。 2-2) aとbが互いに素で、cとdがどちらも素数pの倍数ならば,p=5であることを示せ。. (2-1は解決済みです。2-2の方がよく分かりません)  尚、このような整数、約数、倍数、素数、互いに素 というような問題(例題)を扱った  参考書、WEB サイト等ありましたら、ご紹介いただければありがたいです。よろしくお願いします。

  • 背理法を用いた、整数問題の証明

    a,b,cは整数とし、a^2+b^2=c^2とする。a,bのうち、少なくとも1つは3の倍数であることを証明せよ。  という問題について質問します。 a,bはともに3の倍数でないと仮定する。 このとき、a=3n+1,b=3m+1(n,mは整数)とおく。 a^2=3(3n^2+2n)+1 b^2=3(3m^2+2m)+1 ただし、3n^2+2n,3m^2+2mは整数。 よってa^2,b^2を3で割った余りはともに1である。 ※ a^2+b^2=3(3n^2+2n)+1+3(3m^2+2m)+1 =3(3n^2+2n+3m^2+2m)+2 3n^2+2n+3m^2+2mは整数である。 したがって、a^2+b^2を3で割った余りは2である。 一方、cが3の倍数のとき、c^2は3で割り切れ、 cが3の倍数でないとき、c^2を3で割った余りは1である。 すなわちc^2を3で割った余りは0か1である。 ※ よって、a^2+b^2=c^2において、 左辺は3で割ったときの余りが2、右辺は3で割ったときの余りが0か1 であるから矛盾する。 ゆえに、背理法よりa^2+b^2=c^2ならば、a,bのうち、少なくとも1つは3の倍数である。 このように解答したのですが、※と※の間の部分に対して数学の先生から、不十分というコメントを書かれてしまいました。 どこが不十分なのか分かる方がいらっしゃいましたら、教えていただけないでしょうか。 よろしくお願いします!

  • 6の倍数になることの証明

    nが自然数の時、n(n+1)(nー1)が6の倍数になることを証明せよ。 連続した3つの整数の積が6の倍数になることの証明なのでn=2aと n=2a+1にわけて証明するのかと思うのですが、わかりません。どのように証明したらよいかどなたか教えて頂けませんか。

  • 証明

    何度も失礼します。 問題は、a,b,cはどの2つも1以外の共通な約数を持たない正の整数とする。a,b,cが、a^2+b^2=c^2を満たしているとき、次の問いに答えよ。 (cは奇数である) (1)a,bの1つは4の倍数であることを示せ。 証明は、cは奇数であるから、,bのうちいずれか一方は偶数で、他方は奇数である。いま、偶数の方をaとしてもよい。aが4の倍数でないと仮定すると、a=4k+2,b=4m±1,c=4n±1(k,m,nは整数)とおける。 a^2+b^2=(4k+2)^2+(4m±1)^2 =8(2k^2+2k+2m^2±m)+5 c^2=(4n±1)^2=8(2n^2±n)+1 よってあまりが違い、矛盾するので正しい。 となっているのですが、{a=4k+2,b=4m±1,c=4n±1(k,m,nは整数)}ですが一つ目の疑問は(k,m,nは整数)ですが、整数では、例えばmが-3とかのとき明らかに-になるのでだめですよね?bが正の整数を大前提にということでしょうか?もうひとつは、これはb,cは奇数であることをいいたいのだからa=4k+2、b=2m-1,c=2n-1(・・・m,nは自然数)としてはいけないのでしょうか?それでもできるとおもうのですが。b=4m±1,c=4n±1である理由があるのでしょうか?

  • 整数の性質について

    ↓の証明がどうしても分かりません。 (1)ある自然数の平方とその数の和は偶数であることを連続する2つの自然数の積は偶数になることを利用して証明しなさい。 (2)3つの連続する整数では中央の数の2乗より1小さい数は両端の数の積と等しいことを証明しなさい。 (1)はある自然数をnとするとnの二乗+n=偶数になればいいんですよね?? (2)は整数をnとすると連続する3つの整数は(n-1)、n、(n+1)。 nの二乗-1=(n-1)(n+1)でいいんですか?? (1)も(2)も続きが分かりません。 どなたか教えてください!!お願いします。

  • 整数問題について

    適当ですが、例えば「全ての自然数nについてn^3+5nが3の倍数であることを示せ」 という問題があれば、n=3k、n=3k±1とおいて式に代入しますよね。 整数問題を扱った参考書を見ると、k:整数として置いているのですが、 n^3+5nに実際にn=3kを代入し、 n^3+5n=3(kの式)となっても、kは整数という条件なのでこれにk=0を当てはめれば0になってしまいます。 質問(1) 上の説明 質問(2) k:自然数 とおいて議論を進めても減点はされないのか よろしくお願いします。 もしかすると0も3の倍数…?

  • 3連続の整数が、2と3の倍数になることの証明

    高校数学の数列の問題です。 数列{an}の初項a1 から、第n項での和を、Snと表す。 この数列が、(n+2)an=3Sn(n=1,2,3,・・・) をみたす。数列{an}の初項a1が整数であるとき、Snは整数であることを示せ。 (n+2)a[n]-(n+1)a[n-1]=3( S[n]- S[ n-1]) これから、一般項を求めて、 a{n}=(n+1)/(n-1) a {n-1} an={(n+1)/( n -1)}×{n/n-2}×{ n -1}×{ n -1/ n -3}× { n -2/ n-4}×… {5/3}×{4/2}×{3/1}a1 約分して、 これから一般項求める an={n(n+1)/2}× a{ 1} (ここからは、ある人からの回答です) a[n]={n(n+1)/2}× a[1] を求めた時点で、 n(n+1)/2 は1からnまでの和ですから a[1]が整数なので、 a[n]は整数であることが分かります。 a[1]からa[n]までの和である S[n]も当然整数となります。 もし計算で出すのでしたら n(n+1)(n+2)/6×a[1] となります。 これが整数であることは n(n+1)(n+2) は連続する3つの整数なので、 2の倍数と3の倍数を含むことから6の倍数となります。 つまり分母の6が約分されるので整数となります。 とあるのですが、 この「 n(n+1)(n+2) は連続する3つの整数なので、 2の倍数と3の倍数を含むことから6の倍数となります。」 この部分は、証明なしで使っていいのでしょうか? いわれると何となくわかるのですが・・・ また、これを示すには、どうすれば示せますか? お願いします。