• ベストアンサー
  • 困ってます

整数問題

正の整数a,b,cが 2a-3b=0・・・(1) 2a-5c=1・・・(2) を満たしている。 (1),(2)を満たすaの最小の正の値はアである。 また、(1),(2)より 2(a-イ)=ウ(b-エ)=オ(c-カ) が成り立つので、 a-イは2桁の整数キクの倍数である。 (1),(2)から 2a=3b 2a=5c+1 2aは偶数だから3bが偶数になるにはbが偶数であればよいからbの取り得る値はb=2,4,・・・・ 同様に5c+1が偶数になるにはcが奇数であればよいからcの取り得る値は c=1,3,・・・・ a,b,c,の対応表をb=6までつくったところ (1),(2)を満たすaの最小の正の値は3となりました。 これ以降が全く分からないので、どなたか教えて下さい。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • debut
  • ベストアンサー率56% (913/1604)

2a=3bと2a=5c+1から、これらを1つに結んで、 2a=3b=5c+1 解答に与えられた形から、各辺からある数を引いて すべてが因数分解されるようにできることが わかります。引く数をkとしてみれば、 2a-k=3b-k=5c+1-k 2(a-k/2)=3(b-k/3)=5{c-(k-1)/5} k/2,k/3,(k-1)/5の部分は解答の記号から1けた の整数なので、k は2と3の公倍数で、しかもk-1は 5の倍数です。 k=6,12,18のうち、k=6のときk-1=5,k=12のとき k-1=11,k=18のときk-1=17ということから、k=6 とわかります。 よって、2(a-3)=3(b-2)=5(c-1)。 すると、b-2もc-1も正の整数なので、a-3が何の 倍数でなければならないかは見えてきます。 ということでいいのでしょうかね?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

夜遅くに回答ありがとうございました。 b,cの取り得る値を考慮して表を書いたら、a-3は15の倍数ということが 分かりました。 ありがとうございました。

その他の回答 (2)

  • 回答No.3
  • good777
  • ベストアンサー率28% (36/125)

正の整数a,b,cが 2a-3b=0・・・(1) 2a-5c=1・・・(2) を満たしている。 (1),(2)を満たすaの最小の正の値は3である。 また、(1),(2)より 2(a-3)=3(b-2)=5(c-1) が成り立つので、 a-3は2桁の整数15の倍数である。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。

  • 回答No.2

(1)から   a=(3/2)b ・・・ (1) (2)から   a=(5/2)c+1/2 ・・・ (2) ここで 2(a-イ)=ウ(b-エ)=オ(c-カ) ですので、2(a-イ)=ウ(b-エ)と 2(a-イ)=オ(c-カ) とに分けて考えます。 前者より    2(a-イ)=ウ(b-エ) (1)を代入して    2((3/2)b -イ)=ウ(b-エ) (※(2)ではなく(1)を代入するは文字をbだけにするため) 3b-2*イ=ウ*b-ウ*エ 両辺を見比べると、左辺のbの係数が3なので当然右辺のbの係数も3。従って ウ=3 。すると上式は 3b-2*イ=3b-3*エ    ∴2*イ=3*エ ・・・(3) 次に後者より     2(a-イ)=オ(c-カ) (2)を代入して    2((5/2)c+1/2-イ)=オ(c-カ) 5c+1-2*イ=オ*c-オ*カ 両辺見比べるとcの係数は5なので オ=5 。従って上式は      5c+1-2*イ=5c-5*カ 両辺から5cを引くと 1-2*イ=-5*カ 両辺移項して書き直すと 5*カ=2*イ-1 これより左辺は5の倍数ですので、右辺も5の倍数。右辺が5の倍数になるようにイを1から9の間で選ぶと イ=3 のとき        5*カ=2*3-1=5 となりOK。また上式より カ=1 。また イ=3 を(3)に代入すると        2*3=3*エ ∴ エ=2 以上より 2(a-3)=3(b-エ)=5(c-カ) 。これより 2(a-3) は3と5の倍数でなければならない。 従って (a-3) は15の倍数になります。        

共感・感謝の気持ちを伝えよう!

質問者からのお礼

詳しい説明ありがとうございました。 参考にさせていただきます。

関連するQ&A

  • 整数の問題

    A、B、Cは自然数で、ABは偶数Bは奇数します。A^2+AB+B^2=C^2から、Aは8の倍数であることを示せ。 Aの倍数性を知りたいからAで固めて A(A+B)=C^2-B^2 とするのは、考え方として正しいですか?知りたいのはCでもある? また、模範解答は、上まで変形し、C^2が奇数なことを知ってからB=2K+1、C=2L+1として代入してますが、Cが奇数であることを知る前に、初めからそれを代入したらダメ(分かりにくい)なのですか?あとAもA=2Mなどとしてとにかく代入するのは下手ですか?質問ばかりですみません。整数の基本を教えてください。

  • 整数の問題がわかりません

    a^2+b^2=c^2をみたす自然数(正の整数)a,b,cがある。ただし、a,bは互いに素でbは偶数であるとする。c+a=2p、c-a=2qとなる自然数p,qが存在し、pとqは互いに素であることを示せ。ここで、2つの自然数が互いに素であるとは、その2数の正の公約数が1のみであることである。 です。 条件からbが偶数ならa=奇数、c=奇数。という事ぐらいしか分かりませんでした・・・ 解答してもらえるとありがたいです

  • 整数について。

    (1)最大公約数と最小公倍数の和が51であるa,b(a <b)の組は、?組あり、最大のa の値は、?である。 (2)和が546で、最小公倍数が1512である2つの正の整数を求めよ。 この2問にご教授願いたいです。すみません。

  • 整数の問題

     整数(?)の問題です。よろしく御指導下さい。 1)3つの自然数a,b,cがa~2+b~2=c~2を満たしている。このとき、a,bの少なくとも一方は偶数であることを証明せよ。 2)自然数はa,b,c,dはc=4a+7b,d=3a+4bを満たしている。 2-1) c+3dが5の倍数ならば、2a+bも5の倍数であることを示せ。 2-2) aとbが互いに素で、cとdがどちらも素数pの倍数ならば,p=5であることを示せ。. (2-1は解決済みです。2-2の方がよく分かりません)  尚、このような整数、約数、倍数、素数、互いに素 というような問題(例題)を扱った  参考書、WEB サイト等ありましたら、ご紹介いただければありがたいです。よろしくお願いします。

  • 整数問題の証明

    「ある整数n(n+2)が8の倍数ならばnは偶数であることを証明せよ。」 という問題で、この問題の解答を一応書いておくと、 「n(n+2)が8の倍数ならばnは奇数であると仮定すると、 n=2k-1(kは整数)とおいて、 n(n+2)=(2k-1)(2k+1)=4k^2-1より、 n(n+2)は奇数なので8の倍数になりえず矛盾。 ゆえにnは偶数である」 ですが、私は、 「n(n+2)が8の倍数ならばnは奇数であると仮定すると、 n(n+2)=8k(kは整数)と表せるので、 n^2=2(4k-n)となり、n^2は偶数だから、 nが奇数ならばn^2も奇数なので矛盾。 ゆえにnは偶数である」 と解いたのですが、これは解答として成立しますか? 違うのであれば具体的にどこが違うのかもお願いします。

  • 整数の問題?

    nを3以上の整数とする。x~(n-1)+x~(n-2)+・・・+x+1をx-1で割った余りは□アとなるから、x~(n)-1を  (x-1)~2で割った余りは□イである。 また、x~(n)-1をx~(2)-1で割った余りは、nが偶数のとき□ウであり、nが奇数のとき□エである。 □の中ア、イ、ウ、エに答を入れる問題ですが、自分の答はア:n イ:n(x-1) ウ:? エ:?となりました。 途中式も含めて解説をお願いできれば有り難いです。どうかよろしくお願いします。 、

  • a,b,cはa^2-3b^2=c^2を満たす整数とするとき、次のことを

    a,b,cはa^2-3b^2=c^2を満たす整数とするとき、次のことを証明せよ。 1、a,bの少なくとも一方は偶数である。 2、a,bが共に偶数なら、少なくとも一方は4の倍数である。 3、aが奇数ならbは4の倍数である。 という問題です。 1はa,bを奇数として、2m+1,2n+1とおいて計算したのですが、いまいちどう証明したらよいのか分かりません。 2はどちらも2m,2nとして計算したら、4(m^2-3n^2)=c^2となったのですが、これで何の証明になるのか…。 3もよく分かりません。 勉強不足で申し訳ありません。考え方だけでも教えてください。よろしくお願いします。

  • 苦手な整数問題的な証明問題

    こんにちは 1浪生でございます。 この度は整数問題に関していくつか質問させていただきたく存じます。 質問1、3つの自然数a,b,cがa^2+b^2=c^2を満たしている。この時、a,b,cの少なくとも一つは3の倍数であることを証明せよ。 質問2、nは整数とする。n^3が偶数の時、nも偶数であることを証明せよ。 の2問でございます。 お時間の許す限り、宜しくお願い致します。

  • 整数の個数について

    整数の個数について 数学の問題集で『3桁の正の整数のうち、3で割ると1余る偶数の個数はいくつか』という問題の解説で、 『3で割ると1余る偶数は、6で割ると4余る数である』とあったのですが、 どう理屈でどう考えるとこれが導き出せるのかがわかりません。どのように考えればよいのでしょうか? 例えば、三桁の正の整数で、3で割り切れる数であり、かつ、偶数(2で割り切れる数)の個数、といった場合には、 3と2の最小公倍数である6の倍数で考えて個数を導けばよいとわかるのですが・・・。 自分でも調べてみて、3で割ると1余る→3X+1か3x-2で表せるなど色々考えてみたのですが、行き詰ってしまいました。 どうかご指南をよろしくおねがいします。

  • 証明

    何度も失礼します。 問題は、a,b,cはどの2つも1以外の共通な約数を持たない正の整数とする。a,b,cが、a^2+b^2=c^2を満たしているとき、次の問いに答えよ。 (cは奇数である) (1)a,bの1つは4の倍数であることを示せ。 証明は、cは奇数であるから、,bのうちいずれか一方は偶数で、他方は奇数である。いま、偶数の方をaとしてもよい。aが4の倍数でないと仮定すると、a=4k+2,b=4m±1,c=4n±1(k,m,nは整数)とおける。 a^2+b^2=(4k+2)^2+(4m±1)^2 =8(2k^2+2k+2m^2±m)+5 c^2=(4n±1)^2=8(2n^2±n)+1 よってあまりが違い、矛盾するので正しい。 となっているのですが、{a=4k+2,b=4m±1,c=4n±1(k,m,nは整数)}ですが一つ目の疑問は(k,m,nは整数)ですが、整数では、例えばmが-3とかのとき明らかに-になるのでだめですよね?bが正の整数を大前提にということでしょうか?もうひとつは、これはb,cは奇数であることをいいたいのだからa=4k+2、b=2m-1,c=2n-1(・・・m,nは自然数)としてはいけないのでしょうか?それでもできるとおもうのですが。b=4m±1,c=4n±1である理由があるのでしょうか?