• ベストアンサー

コイルに流れる交流電流の問題

ykskhgakiの回答

  • ykskhgaki
  • ベストアンサー率51% (14/27)
回答No.1

一般に、微分方程式を解くときは初期条件が与えられますが、与えられて いないときは、積分定数 C を付けたままの解でいいと思います。 このときの式の書き方ですが、下記のように表記すると記憶しています。 I = -(A/ωL)cosωt + C → i = -(A/ωL)cosωt + C 電気回路では時間的に変化する量(時間の関数)は小文字で表記します。 理想化されたコイルには抵抗がないので、書かれたような条件で式を解けば C = A/ωL となり、i = (A/ωL)(1 - cosωt) これは、入力電圧 v = 0 (t ≦ 0), v = Asinωt (0 < t) として、 電流の初期値を 0 としたときの過渡現象の解です。 しかし、この問題は定常状態での解を考えていると思われるので、 v = Asinωt (-∞ < t < ∞) であり、t = 0 以降の電流を観察すると C = 0 となり、i = -(A/ωL)cosωt と表されます。 抵抗は無視できるほど小さいが、極めて長い時間の間には直流成分を減衰させる だけの抵抗はあると考えればいいのではないでしょうか?

hhanz10
質問者

お礼

ご回答ありがとうございます。 t=0のとき電圧はv=0で、このとき計算上はC = A/ωLつまり、i(0)= A/ωL となりますが、実際は導線などの抵抗が無視できないのでt=0のとき、i=0 ということですね。 つまりtが小さい時と、tが大きいときでは関数の形が異なり、tが大きいとき、 つまり定常状態に達したときはC=0として扱えるということですね。 こういう理解でよろしかったでしょうか。 間違っていた場合はご指摘いただければ幸いです。

関連するQ&A

  • 高校物理、交流、コイルの電流

    (参考書の記述) 回路に抵抗がないとき、時刻tにコイルにかかる電圧がv=V0sinωtであるとする。このとき、微小時間⊿t後の電圧をv+⊿v、電流をi+⊿iとする。 電流の変化により、コイルには自己誘導起電力vLが生じる。電流iの向きを正として、vL=-L⊿i/⊿t。 キルヒホッフの法則より、v+⊿v+vL=(i+⊿i)×0=0であり、⊿tが微小な時、⊿v=0であるから、vL=-Ldi/dtであり、di/dt=V0/Lsinωtであり、この式を満足するiの関数はi=ーV0/Lωcosωt。 (疑問) (1)キルヒホッフの法則より、v+⊿v+vL=(i+⊿i)×0=0であり >右辺の(i+⊿i)×0はどういう意味でしょうか?私は⊿t後にはコイルの自己誘導により、電流が流れないと考えたのですが。 (2)、⊿tが微小な時、⊿v=0 >微小時間だから電圧も変化しないと単純に考えてよろしいのでしょうか? それとも何か別の理由がありますか? (3)di/dt=V0/Lsinωtであり、この式を満足するiの関数はi=di/dt=V0/Lcosωt。 >di/dt=V0/Lsinωtを積分したらi=V0/Lcosωt+C(積分定数)が出てきて、t=0のとき、i=0であるから、C=-V0/Lとしたら、食い違いました、どうして私の考え方は間違えなのでしょうか?

  • 交流とコイル 高校物理IIです。おしえて・・・・・

    下図のような回路があります。{{{{はコイル、@は交流電源をあらわしています。ここでコイルの抵抗は無視します。電源電圧はvsinωtでコイルには誘導電圧 -Ldi/dtがかかります。 *以下、電流を求めます。 キルヒホッフ第二法則よりvsinωt-Ldi/dt=0となる よってvsinωt=Ldi/dt よってvsinωtdt=Ldi よって∫vsinωtdt=∫Ldi よって-v/ωcosωt=LI+c ゆえに電流I=-v/ωLcosωt+cとなりますよね? ここで質問なのですが、教科書によると積分定数cは0になりI=-v/ωLcosωtとなるようです。これはなぜですか?どうかお願いします。   _____{{{{{_____ 1 1 1 1 1_____@___1

  • キルヒホッフのだしかた

    電流がiの時、キルヒホッフの法則により、Rにかかる電圧はRiです。 問題はコンデンサCとインダクタンスLにかかる電圧はそれぞれ1/C×∫i(t)dtとL×di(t)/dtとなりますよね。 この2つの式ができるまでの過程を教えて欲しいです。よろしくおねがいします。なぜコンデンサの場合は1をCで割った奴に電流の積分を掛けるのか、また、インダクタンスお場合はなぜLに電流の微分を掛けるのか知りたいです。

  • 交流の電流、電圧

    抵抗Rの抵抗と自己インダクタンスLのコイルを交流電源に直列に接続したところ 抵抗の両端とコイルの両端の電圧が等しくなった 交流電源の実効値をVeとして抵抗の両端の電圧の実効値を求めよ ただしコイルの抵抗や電源の内部抵抗等は無視する 上の問題でまず疑問に思ったのが、抵抗とコイルの両端の電圧がそれぞれ等しい という表記についてです 直列接続なので電流は共通でありI(t)=√2Iesinωtとおけます ただしIeは電流の実効値でありωは各周波数、tは時間です ここで抵抗の両端電圧をVrとおくとオームの法則より Vr=√2IeRsinωtです またコイルの両端電圧をVlとおくと誘導リアクタンスがωLであるので Vl=√2IeωLcosωtです 問題文よりVr=Vlとなりますが、正弦曲線と余弦曲線なので 完全に重なることはありえません つまりある一点ではVr=Vlとなり得ますが、他の点では等しくなりません 電圧が等しいというのは常に等しいということではないのでしょうか? これが疑問に思ったことの一つ目です また参考書や教科書でよく目にするのですが、ベクトル図で解く解法があります (この場合は複素平面で考えるものではなく単純に電流や電圧の実効値を 基準とした位相のズレをベクトルで表すタイプのものです) あのベクトル図で電圧の合計などが求められるのがよく理解できません 上の例で言えば共通の電流の実効値をIe、 抵抗の両端の電圧の実効値をVer、コイルの両端の電圧の実効値をVel とすると、Ieを横軸にとってベクトル図を書きますよね このときVerはIeと同じ方向に伸ばし、Velは90度反時計回りに伸ばします この合成ベクトルが電源電圧の実効値Veに等しくなるという求め方です 納得できない理由はIeという電流が流れてる時、抵抗の電圧はたしかに Vr=IeRで表されますが、コイルの電圧はVl=IeωLではありませんよね? 一般的な式としては成り立ちますが、Ieという電流が流れてる瞬間は コイルは電圧が先に進むのでVl=0となります にもかかわらずベクトル図ではIeを横軸にとってそれを基準に90度ずらして 合成すると電源電圧の実効値が求まるというのはいささかよく分かりません 以上長文ですが2つの疑問についてご教授願いたいと思います

  • 交流回路の電圧と電流

    いつもお世話になっております。 QNo.1538037の質問と関連しているかもしれません。 (サイエンス社の基礎物理学演習IIのP.91とP.94の問題です。) コイルと電源からなる単純な回路です。 交流電圧がV=V'coswt(注意:wは角周波数)の場合 V'coswt=L(dI/dt) (L:コイルの自己インダクタンス)の微分方程式を解くと I=(V'/wL)sinwt+Cとなります。Cは積分定数です。 ここで[条件]t=0のときI=0を適用すると、C=0となり 電流はI=(V'/wL)sinwtと決まります。 一方、交流電圧がV=V'sinwt(注意:wは角周波数)の場合 V'sinwt=L(dI/dt) を解くと I=-(V'/wL)coswt+Cとなります。Cは積分定数です。 ここで[条件]t=0のときI=0を適用すると、C=V'/wLとなり、 I=-(V'/wL)coswt+V'/wL となると思いますが、解答ではI=-(V'/wL)coswtとなっています。 なぜCの値をゼロにしているのかが分かりません。 Cの値は直流成分なので、交流回路では考えなくても良いということなのでしょうか。アドバイスをよろしくお願いいたします。

  • コンデンサーに交流電流が流れている場合

    導線に流れている電流をi=Isinωtとすると、(Iは振幅) コンデンサーに蓄えられている電荷Qは次のような計算で 単純に求めてもいいものでしょうか。 i=(dQ/dt)=Isinωt  両辺をtで積分して Q=∫Isinωt dt = (-1/ω)Icosωt 積分区間などは考えなくてもいいものなのでしょうか? また、なぜ積分して求められるのかがちょっと理解しにくいです。 また、このマイナスはどう考えたらいいのでしょうか? よろしくお願いいたします。

  • コイルを含む回路の過渡現象

    電源(電圧E)と、オンオフスイッチと、コイル(インダクタンスL)と抵抗(R)が直列に接続された回路があります。 スイッチをオンにしたときは、 回路方程式は E=L(di/dt)+iR となると思います。 定常状態では、 E=iR その後、電圧をゼロにすると、 0=L(di/dt)+iR になると思います。 定常後、電圧を維持したまま、スイッチを切った場合(オープンにした場合)どうなるのでしょうか? 回路はオープンになるので、電流は流れない(i=0)と思いますが、 一方、コイルがあります。 コイルは電流の減少を妨げようとします。 コイルはiがゼロになろうとするのに抵抗すると思いますが、電流源がありません。 どうなるのでしょうか?

  • 流れる電流と電源がコイルに与える電力について

    インダクタンスLのコイルのみをE=E0sinωtの交流電圧につなぐとき、流れる電流と電源がコイルに与える電力を求めよ という問題がわかりません。 どなたか教えていただけませんか?

  • RLC直列回路の瞬時電力について

    電気回路のRLC直列回路についての問題を解いていたのですが途中でつまってしまったのでアドバイスを頂きたいです。 (1)RとLとCを直列に接続した回路に、交流電源による電流i = √2*Ie*sin(ωt)が流れているとき、LとCの瞬時電力PLとPcをそれぞれ求めよ。 (2)電源の角周波数ωを変化させた時、コンデンサCの両端の電圧Vcが最大になるためのωの条件を求めよ。 ●詰まってしまった点 (1)PLについてはコイルにかかる電圧vLをL*(di/dt)により求め、そこから PL = vL * i = L * (di/dt) * i として求めることができました。 しかしPcについて求めようとしたときコンデンサにかかる電圧vcを vc = (1/C) * ∫i dt として求めようとしましたが電流iを積分するとsin関数を積分するのでマイナスの値となってしまいました。そこで瞬時値電力がマイナスではおかしくないか?と思い、詰まってしまいました。 (2)にいたってはどうのようにアプローチすればよいか全く分からず手も足も出ませんでした。。 どうかご指摘、アドバイスをお願いします。

  • 電池・抵抗・コイル・コンデンサ回路における式

    電池と抵抗・コイル・コンデンサなどで回路をつくったときの式の立て方で質問です。 私は,全部直列だと仮定すると 電源電圧=RI+L(dI/dt)+q/C ※ 電源電圧は抵抗とコイルとコンデンサによる電圧降下と同じ と式をたててきました。 ところが,最近この関連の本を改めて読むと 電源電圧-L(dI/dt)=RI+q/C ※ 電源電圧-コイルの逆起電力=抵抗の電圧降下+コンデンサの電圧降下 と説明しています。 さらには,充電したコンデンサとコイルだけの回路で -L(dI/dt)=-q/C と式をたてた後,コンデンサの電荷と電流の向きから I=-qより L(dI/dt)=-q/C と説明している本があります。  そこで質問です。 1 コイルを逆起電力(電池の一種?)と見なして式をたてても,私のように式をたてても結果的には一緒になると思うのですが,わざわざコイルを電池と見なす理由は何でしょうか。コイルによる電圧降下と単純に考えるのは安易なのでしょうか。 2 充電したコンデンサとコイルの回路の説明は意味が分かりませんでした。単純に電池のない回路と見なして,L(dI/dt)+q/C=0としても式としては同じです。私の理解が安易なのでしょうか。  御指導いただければ幸いです。