- ベストアンサー
- すぐに回答を!
単振動の問題について
以下の問題の解き方を教えてください。 質点Aは点Qを通過後、質点Bと弾性衝突したあと、質点Bはs>0で単振動する。ばね定数はk、ばねの自然長はs_0とする。 (1) 質点B(質量2m)の衝突前のx軸からの高さをhとする。質点A(質量m)と質点Bの衝突後に質点Aが到達する最高点(X<0側)の高さを求めよ。 (2) 質点Aと質点Bの衝突後、質点Bが単振動を行う際の運動方程式をsで表せ。 (3) 質点Aと質点Bとの衝突の瞬間をt=0として(2)の運動方程式を解け。また、振幅、周期を求めよ。ただし、衝突直前の質点Aの速さをu_Aとする。
- NRTHDK
- お礼率60% (198/327)
- 物理学
- 回答数1
- ありがとう数1
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- naniwacchi
- ベストアンサー率47% (942/1970)
こんにちわ。 わかりずらいところは、一度置いてしまっていくのがよいかと。 (1) ここがすべてのスタートなのですが、AがBに衝突するまでの ・力学的エネルギー保存の法則 ・弾性衝突の式 ・運動量保存の法則 これらを表していきます。 このとき、点Pの点Oの水平面からの高さを H、 衝突直後の Aの速度を v_A、Bの速度を v_Bとおいてみてください。 求めたい最高点の高さについては、衝突した後の力学的エネルギー保存の法則を考えます。 (2) ここは、Bにだけ注目してどのような力がかかっているかを考えます。 (3) 振幅:A、各振動数:ωとおけば、位置は s= s0+ A* sin(ωt)と表されるはずです。 これを上で導いた運動方程式に当てはめ、初期条件を満たすことを考えます。
関連するQ&A
- 『ばねの質量』を考慮に加えた単振動の振動数解析
ばねの一端に質量mの物体を付け単振動させる。ばね自身の質量をMとする。 このときの振動数は質量m+M/3の質点を付け、ばねの質点を無視した時の振動と同じである事を示せ。 但し、ばねと質点は同じ位相で伸び縮みするものとする。 それぞれの運動方程式を求めようとしたのですが、どうも「ばね自身の質量がある場合」での運動方程式が違っているようで その先に進めません。。。 分かる方は解き方でけでもよろしくお願いします。。
- ベストアンサー
- 物理学
- 物理 単振動
ばね定数kのばねに質量mの小球をつけ、水平で滑らかな床の上に置き、ばねの他端を固定した。小球は質点とする。次に小球を手でつかみ、ばねを伸ばして手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として振動の中心を原点とする。このとき、小球の運動方程式はm((d^2x)/(dt^2))=ーkxと書ける。小球の変位はこの運動方程式の解として与えられx=Asinωt+Bcosωtと書ける。ただし、ωは角振動数であり、A,Bは初期条件で決定される定数とする。 (1)運動方程式よりx=Asinωt+Bcosωtを導出せよ。 (2)解を運動方程式に代入するとωをmとkで表すことができる。その式を求めよ。 (3)小球は時刻t=0のとき、原点x=0を速度voで通過した。この時の、AとBを求めよ。 (4)ばね定数kおよびばね定数2kのばねを小球の両側に一直線となるようにつけ、それぞれのばねが自然の長さとなった状態で固定した。次に小球を手でつかみ、ばねの長さに沿って移動させて手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として、振動の中心を原点とする。このときの運動方程式を求めよ。 特に(3),(4)がわかりません。(1)~(4)どれでも構いませんので回答よろしくお願いします。 もちろん、(1)~(4)を教えてくださると大変助かります。 よろしくお願いします。
- 締切済み
- 物理学
- 物理I ばね、単振動の問題
(重力加速度の大きさをgとする) 質量の無視できるばね定数kの十分に長いばねが鉛直に立てられており、その上に質量Mの物体Bが取り付けられている。重力とばねの復元力がつりあっているときの物体Bの位置をx軸の原点(x=0)とし、x軸の正の向きを鉛直上向きにとる。物体Bは鉛直方向にのみ動く。 最初、物体Bはつりあいの位置で静止していた。質量mの物体Aを、物体Bの真上のx=hの位置から初速度0で落下させた。物体Aは物体Bと完全非弾性衝突をし、物体Bと一体となって運動を続けた。 (1)Bが静止しているとき、自然長からのばねの縮みΔLを求めよ。 (2)AがBに衝突する直前の速さを求めよ。 (3)AとBが一体となった衝突直後の速さを求めよ。 一体となった物体は最下点に達した後、上昇を始め、ある位置になった時に、物体Aは物体Bから離れた。衝突してから離れるまでの運動は単振動である。今、一体となったAとBがx(0<x<ΔL)の位置にいるとする。 AとBをひとつの物体とみなして、xの位置における加速度をaとし運動方程式を立てる。 (4)加速度aをxの関数として表せ。 (5)この単振動の周期を求めよ。 (6)AがBから離れる位置のx座標を求めよ。 物理のテストに出た問題なのですが、(1)しか理解できません。 どうしても解答にたどりつけず、困っています。 長々としてしまいましたが、1つでも解説をいただけると嬉しいです。
- 締切済み
- 物理学
- 単振動の問題を教えてください
答えがわからなくて悩んでいます。教えてください。 糸でつないだ物体Aと物体B(両方とも質量は同じm)が、天井から下がっているばねに下げられている。(物体Aがバネに取り付けられ、物体Aから糸でBがぶら下がっている) 糸の張力はSとする。 物体Aを手で持って、Bと一緒にばねが自然長のところまで鉛直方向に持ち上げて、手を離す。 このとき物体Bの単振動の周期と振幅を求めよ。 という問題です。 自分としては、物体Aと同じ動きをするのかなと思ったんですが、Bは糸でつながってるので上に上がったとき糸が縮んで振幅は大きくなるのかなど悩んでいます。 糸の長さとか糸がたるむかどうかとかの条件は書いてないです。 解法と考え方を教えてください。 よろしくお願いします。
- ベストアンサー
- 物理学
- 振動・波動の問題を教えてください!!緊急です。。。
物理の振動・波動の問題です。 全く分からなくて、緊急事態です・・・ よろしくお願いします。 質量mを持つ2つの質点1,2が、自然長l、ばね定数kの3つのバネで接続され、x=0とx=Lで動かない壁に固定されている。水平右方向にとったx軸にそった1次元運動を考え、重力は考えない。(ただし、ω0≡√k/m) 図は、壁ーバネー質点1ーバネー質点2ーバネー壁 といった様子です。 (1)質点1,2の位置をそれぞれX1、X2としたとき、質点1,2の運動方程式を答えよ。 (2)質点が静止している場合の位置(釣り合いの位置)X1s、X2sを答えよ。 (3)質点1,2の位置を釣り合いの位置から測ったものをそれぞれ、x1=X1-X1s、x2=X2-X2sとする。x1、x2を使って質点1,質点2の運動方程式を表せ。 (4)運動方程式を解き、2つのモードの振動数ω1、ω2(ω2>ω1>0)をω0を用いて表せ。 (5)各々の振動数に対応する質点1,2の振幅の比を求めよ。 (6)各モードの振動の概略を図示せよ。 (7)モード1(振動数ω1)だけを起こすような初期条件の例を求めよ。 (8)t=0での初期条件が、位置がx1=a、x2=0、初速度がv1=0、v2=0で与えられるとき、位置x1(t)、x2(t)を求めよ。 (9)この運動の様子を簡潔に説明せよ。なお、必要なら、cosA+cosB=2cos{(A+B)/2}cos{(A-B)/2}、cosA-cosB=-2sin{(A+B)/2}sin{(A-B)/2}を用いても良い。
- 締切済み
- 物理学
- 単振動の問題
大学1年の力学でわからない問題があるので教えて下さい。 ------------------------------------------------------------ バネ定数kのバネの一端を壁に固定し、他端に質量Mの 物体Aを結び付け、滑らかな水平面上においた。さらに 質量mの物体BをAに押し付け、バネを自然の長さから Lだけ縮めて手を離した。物体の大きさ、バネの質量は 無視できるものとする。 1.物体Bが物体Aから離れる点はどこか? その点に達する時間はいくらか? 2.1.の時の物体Bの速さを求めよ。 3.物体Bが離れた後、物体Aはどのような運動をするか? 運動する範囲および周期的運動の場合はその周期を記せ。 ------------------------------------------------------------ 運動方程式は (m+M)d^2x/dt^2=-kx で d^2x/dt^2=-ω^2x ω=√(k/(m+M)) ここまではできたのですが1~3の問題の考え方が わかりません。(ここまでも間違っていますか?) よろしくお願いします。
- ベストアンサー
- 物理学
- ばねと二つの質点の問題
ばねと二つの質点の問題 課題でまったくわからない問題があったので、もしわかる方がいらっしゃいましたら教えて下さい。お願いします。 問題文 自然長L、ばね定数kのばねの両端に質量Mの質点1と質量mの質点2が結ばれ、滑らかで水平な台の上にある。質点の運動方向をx軸にとり、質点1と質点2の位置をx1とx2とする。 (a)質点1と質点2の運動方程式を書け。 (b)質量中心の運動方程式を(a)より導き、その一般解を求めよ。 (c)質点2の質点1に対する相対運動の方程式を(a)より導き、その一般解を求めよ。 (d)相対運動の単振動の周期は、M→∞、M=2m、M=m/2、M→0のとき、それぞれT0=2π√m/kの何倍となるか。
- ベストアンサー
- 物理学
- 単振動 振幅
高校物理です。 単振動の振幅についてなのですが、振幅の長さがよくわかりません。 参考書を読んでいたのですが、静かに離した位置が振動の端というのはどういうことでしょうか? 画像のようなことはないのでしょうか? 仮にこの解釈が間違っているとしたら次の問題はどういう意味なのでしょうか? 【ばね定数kのばねの上端を天井に固定し、下端に質量mの物体を取り付ける。 ばねの長さが自然の長さになるように、板を用いて物体を支える。 ばねの質量は無視でき、重力加速度の大きさをgとする。 板を急に取り去ると、物体は単振動を行なう。 この運動において、ばねの伸びの変化とともに、物体の速さも変わる。 物体の速さが0になるのは、ばねの伸びが0のときと、ばねの伸びが最大になるときであり・・・】 物体の速さが0になるときばねの伸びが0だとは限らないのではないでしょうか? 単振動する過程においてばねの振動の端が自然長より上の部分に達する可能性はないのでしょうか? どうぞよろしくお願いします。
- ベストアンサー
- 物理学
- 単振動の問題教えてください!
周期T、振幅Aで上下に単振動する水平な台の上に置いた質量mの物体が台から離れない条件 また 周期T、振幅Aで左右に単振動する水平な台の上に置いた質量mの物体が台から摩擦係数μのとき、離れない条件 は、どう求めたらいいんでしょうか?
- 締切済み
- 物理学
質問者からのお礼
わかりました。もう一度考えてみます。ありがとうございました。