• ベストアンサー
  • 困ってます

ばねと二つの質点の問題

ばねと二つの質点の問題 課題でまったくわからない問題があったので、もしわかる方がいらっしゃいましたら教えて下さい。お願いします。 問題文 自然長L、ばね定数kのばねの両端に質量Mの質点1と質量mの質点2が結ばれ、滑らかで水平な台の上にある。質点の運動方向をx軸にとり、質点1と質点2の位置をx1とx2とする。 (a)質点1と質点2の運動方程式を書け。 (b)質量中心の運動方程式を(a)より導き、その一般解を求めよ。 (c)質点2の質点1に対する相対運動の方程式を(a)より導き、その一般解を求めよ。 (d)相対運動の単振動の周期は、M→∞、M=2m、M=m/2、M→0のとき、それぞれT0=2π√m/kの何倍となるか。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

うろ覚え知識なので、参考までに。 M,mの位置関係は次のようにとる。 -)m---M(+ x1=x,x2=y、とする。 (a) aはMの加速度。 bはmの加速度。 Ma=k[L-(x-y)] mb=-k[L-(x-y)] (b) z=(my+Mx)(m+M). z"=(my"+Mx")/(m+M)=(mb+Ma)/(m+M)=0. z=At+B. (c) w=y-x. w"=y"-x"=b-a=-k[L+w](m+M)/mM. u=w+L. d^2=k(m+M)/mM. u"+d^2u=0. u=Acos(d)+Bsin(d) (d) 周期の比ををTとすると T=(2π/d)/(2πroot{m/k})=root{M/(m+M)}. (1)M=2mのとき、T=root{3/2}. (2)M=m/2のとき、T=root{1/3}. (3)M→∞のとき、T=root{M/(m+M)}→1. (4)M→0のとき、T=root{M/(m+M)}→0.

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.1

最近ずいぶんと目立つようになりましたが、問題の丸投げは禁止です。 何がどこまでわかって何が分からないのかを具体的に書いてください。 (a)~(c)は基本的な問題で教科書を読めば解決するはずです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 2質点系とばねの問題

    よくある問題なのですが式の立て方がわかりません 問題 バネ定数kのバネで結ばれた2つの質点1および2がある。 質点1および2の質量をMおよびmとする 位置をx1およびx2とする。 両質点にバネから力が作用しない際のバネの長さ(自然長)をδとする。 質点はバネの伸縮するx軸方向のみに運動するものと仮定する。 1​wwwwwwww​2 ーーーーー→x (1)質点Aおよび質点Bの運動方程式を完成させよ M・((d^2(x1))/(dt^2))=k(x2-x1-δ)・・(1) m・((d^2(x2))/(dt^2))=-k(x2-x1-δ)・・(2) とあるのですが、(1)の式の右辺の式は(2)の伸び(あるいは縮み)の量は入れなくてよいのでしょうか?それとも(1)の式で質点2は固定してたてた式と考えてよいのでしょうか?

  • バネで結ばれた2つの質点の運動について

    バネ定数kのバネで結ばれた2つの質点AおよびBがある。 質点AおよびBの質量をm_A(mに下付きでA, 以後、下付きの文字の前には_を書くことにする)およびm_B、 位置をx_Aおよびx_Bとする。 両質点にバネから力が作用しない際のバネの長さ(自然長)をδとする。 質点はバネの伸縮するx軸方向のみに運動するものと仮定する。 AwwwwwwwwB ーーーーー→x (2質点系のモデルの簡単な図です。分かりにくくてすみません・・・) (1)質点Aおよび質点Bの運動方程式を完成させよ(これは解けました)。 m_A・((d^2(x_A))/(dt^2))=k(x_B-x_A-δ) m_B・((d^2(x_B))/(dt^2))=-k(x_B-x_A-δ) (2)時間t=0において、両質点は静止しているものとし、その際の両質点 の位置をx_A=x_(AI)およびx_B=x_(BI)とし、x_(BI)-x_(AI)≠δとする。 以下の式の右辺を完成させよ(この問題の右辺をどのように書き表す べきか、出題者がどのような答えを求めているのかよく分かりません でしたが、一応速度を書きました)。 dx_A/dt(t=0)=v_(AI) dx_B/dt(t=0)=v_(BI) (3)運動方程式の解である質点AおよびBの位置x_Aおよびx_Bは、6個の定数、X_A、X_B、λ、α、ν、およびCを用いて、 x_A=(X_A)sin(λt+α)+νt+C x_B=(X_B)sin(λt+α)+νt+C+δ と表すことができる。これらの式と(1)の運動方程式より、X_Aおよび X_Bの関係式(連立方程式)を求めよ。 (この問題は、自信はあまりありませんが、問題文で書かれたとおりに計算を行っていったら、 以下のようになりました。) X_A=-(k((x_B)-(x_A)-δ))/((m_A)(λ^2)sin(λt+α)) X_B=k((x_B)-(x_A)-δ)/((m_B)(λ^2)sin(λt+α)) (4)(3)で導いた式に対して、X_AおよびX_Bの両方が0(ゼロ)にならない 解が存在し得ることを用い、λをm_A、m_Bおよびkを用いて表せ。なお、一般性を失うことなく、λ≧0と仮定できる。 (4)の問題が分かりません。 「X_AおよびX_Bの両方が0(ゼロ)にならない解が存在し得ることを用い」 とあるのですが、これの使い方がいまいちよく理解できません。 色々と式変形してみたのですが、どのように変形しても、 m_A、m_Bおよびkのみで表せません。 相対座標に関する運動方程式を求め、そこから相対座標の運動の固有角振動数を求めるのかとも思ったのですが、それでは(3)を利用していないことになります。 ちなみに、相対座標の運動の固有角振動数は√(k/μ)となりました。 ここで1/μ=1/m_A+1/m_Bです。 長々とすみませんでした。どなたか(4)の問題、ご教授のほど、ヨロシクお願いします。 また、答えで何か間違えているところなどありましたら、ご指摘ヨロシクお願いします。

  • バネでつながれた2つの質点

    重さのないバネでつながれた2つの質点m1,m2が摩擦のない直線上にあります。 長さL、バネ定数kのバネで2つの質点をつないぎ、Xだけ引き延ばし、離したとき、 (1)質点の重心の運動 (2)周期T を求めよ、という問題です。 (1) 重心の位置を求め、左右に張る張力が同じと考えて、左右の質点の運動方程式を立てれば良いのでしょうか? (2) 周期は片方を固定端にして、2つの質点を合わせたものと同じと考えたらいいのでしょうか?

  • バネの問題です。

    自然長の長さがa、ばね定数k(k>0) のバネがあり、このバネの左端に質量m1の質点1、右端に質量m2の質点2を取り付けた。ばねの中心をx軸の原点とし、右方向を正とする。 したがって、質点1の座標をx1、質点2の座標をx2とすると、ばねが静止した状態では、x1=-a/2、x2=a/2である。ばねを伸ばし、手を離した。  ・・・・ とあるのですが、このとき、x軸の原点というのは常に(伸びても縮んでも)バネの中心にあると考えるのか(相対的)、それとも初めにバネの中心があった場所を絶対的にx軸の原点と考えるのかどちらなのでしょうか? どちらに取るかによって答えが違ってくると思うのですが、こんな問題の場合は、どのように考えるのが一般的なのか教えてくださいっ☆

  • ばねの問題

    以前も質問したのですがもう一度詳しく質問させてもらいます よくある問題なのですが式の立て方がわかりません 問題 バネ定数kのバネで結ばれた2つの質点1および2がある。 質点1および2の質量をMおよびmとする 位置をx1およびx2とする。 両質点にバネから力が作用しない際のバネの長さ(自然長)をδとする。 質点はバネの伸縮するx軸方向のみに運動するものと仮定する。 (1)質点Aおよび質点Bの運動方程式を完成させよ M・((d^2(x1))/(dt^2))=k(x2-x1-δ)・・(1) m・((d^2(x2))/(dt^2))=-k(x2-x1-δ)・・(2) とあるのですが自分の考えでは ____OwwwwwwwwwO ____x1____o1_______o2___x2___ 質点1の位置:x1 質点2の位置:x2 質点1の自然長での位置:o1 質点2の自然長での位置:o2 としたとき x1についての自然長からののび:x2-x1-δ-(x2-o2) となるではないでしょうか? お願いします

  • 2次元平面におけるばねの運動に関する問題

    x-y平面の原点にばね定数 k のばねがつながれている。ばねの自然長は L で、ばねのもう一方の端には質量 m の質点がつながれている。 1.質点の位置を(x,y)としたとき、ばねが質点に及ぼす力 F のx成分とy成分を求めよ。 2.質点に対するx,y方向の運動方程式をそれぞれ記述せよ。 3.質点の運動方程式を極座標形式に書き換えよ。 4. 3.の運動方程式を解け。 という問題なのですが、困ったことに解答がありません。なので1.がどうしてもxとyであらわす方法が分からないので先に進めなくて困っています。わかる方がいましたらよろしくお願いします。

  • 2つのバネの間に挟まれた質点の運動の問題

    バネ定数K、自然長L0のバネ、2本の間に質点Mをはさみ、 2本の柱の間(2L)に固定する。ただし、L>L0とする。 静止状態から質点をyだけ上に引きあげて離すとき(Y軸の上方向)単振動に近似した運動をすることが予測できる。この質点を上下に振動させるときの運動方程式を導け。 という問題です。(解答はついていません) 静止状態からyだけ上げたとき、蓄えられるバネのエネルギーは 2K・((L^2+y^2)^1/2-L0)ですが、それがそのまま振動の使われるのではないことは想像できます。 M・d^2y/dt^2 = -2K・((L^2+y^2)^1/2-L0) ・ X このXに入る係数はどうやって求めたら良いでしょうか。 元々の緊張した状態にするために使われているエネルギーと、 上下の振動のためのエネルギーの、分割のしかたがわかりません。

  • 質点系の力学

    質量m1、m2の二つの質点が自然の長さLのバネでつながれて 滑らかな水平面上に置かれている。質点はx軸上にあり、x軸上で運動するとする。 バネ定数をk、質点の座標をx1、x2として次の問に答えよ。但しx1>x2とする。 (1)重心の座標Xに対する運動方程式を求めよ。 (2)相対座標x=x1-x2に対する運動方程式を求めよ。 という問題ですが、 (1) m1の運動方程式:m1(d^2/dt^2)x1=-k(x1-x2-L)・・・ア m2の運動方程式:m2(d^2/dt^2)x2=k(x1-x2-L)・・・イ ア+イより (m1+m2)(d^2/dt^2)X=0 これは納得できました。が次の(2)の答えがよくわからないです (2) 自分は単純にア-イより (m1-m2)(d^2/dt^2)x=-2k(k-L)でいいのかなと思ったのですが、 解答には (ア/m1)-(イ/m2)より (d^2/dt^2)x=-k(x-L)((1/m1)+(1/m2)) とありました。 どうして、わざわざm1とm2で割ってから引くのでしょうか? 式が分かりにくいと思いますが、おねがいします。

  • 1つのばねで繋がれた2体問題

    質量mの2つの質点がバネ定数kのバネ(自然長L)で連結している。時刻t=0で質点1の位置はx=0、質点2の位置はx=Lとする。右向きを正として、t=0で質点1に速度v0を与えた。 (1)時刻tの時の重心速度vGと重心位置xGを求めよ。 (2)時刻tでの質点1に対する質点2の相対速度(v2-v1)と相対位置(x2-x1)を求めよ。 (3)時刻tでの質点1と2の速度v1、v2と位置x1、x2を求めよ。 (2)に至っては質点1が動いてバネが縮むと弾性力で質点2が押されて時々刻々と速度が変化すると思いますので、どうやって問題を解いていけば良いのか全く分かりません。バネの伸び縮みによって質点の位置も複雑な変化をするので難しく、運動方程式も上手く立てられない状況です。 一応自分なりに解こうとした方法は、まず先に初速度v0で質点1が動いてバネが縮んだ事による弾性力はk(x2-x1-L)となるから...とここまで程度で、変位だけでなく更にどちらの向きに各質点が動き、バネが縮んだのか或いは伸びたのかが全て時間によって変わるので歯が立ちませんでした。 実はこの問題は別のサイトでも質問させてもらったのですが、回答者によって若干答えが違っていたり、少し不明な点があったのでこちらでも質問しました。ちなみに他の回答者さんたちは誰も換算質量μで式を立てていなかったのですが、換算質量で考えなくてもよろしいのですか? どなたか上の問題の解説をお願い出来ないでしょうか。

  • バネ振動のラグランジェについて

    自然長l、バネ定数kのバネの両端に質量m1、m2の質点をとりつけて摩擦のない平面上に(x軸上で)運動させるときのラグランジェ方程式の立て方がわかりません。 両端を固定するバージョンはわかるのですが、両端を固定しない、このバージョンはどうやるのでしょう? 初期条件の設定の仕方もわからないので、お願いします。