• ベストアンサー
  • 困ってます

ばねと二つの質点の問題

ばねと二つの質点の問題 課題でまったくわからない問題があったので、もしわかる方がいらっしゃいましたら教えて下さい。お願いします。 問題文 自然長L、ばね定数kのばねの両端に質量Mの質点1と質量mの質点2が結ばれ、滑らかで水平な台の上にある。質点の運動方向をx軸にとり、質点1と質点2の位置をx1とx2とする。 (a)質点1と質点2の運動方程式を書け。 (b)質量中心の運動方程式を(a)より導き、その一般解を求めよ。 (c)質点2の質点1に対する相対運動の方程式を(a)より導き、その一般解を求めよ。 (d)相対運動の単振動の周期は、M→∞、M=2m、M=m/2、M→0のとき、それぞれT0=2π√m/kの何倍となるか。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数991
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

うろ覚え知識なので、参考までに。 M,mの位置関係は次のようにとる。 -)m---M(+ x1=x,x2=y、とする。 (a) aはMの加速度。 bはmの加速度。 Ma=k[L-(x-y)] mb=-k[L-(x-y)] (b) z=(my+Mx)(m+M). z"=(my"+Mx")/(m+M)=(mb+Ma)/(m+M)=0. z=At+B. (c) w=y-x. w"=y"-x"=b-a=-k[L+w](m+M)/mM. u=w+L. d^2=k(m+M)/mM. u"+d^2u=0. u=Acos(d)+Bsin(d) (d) 周期の比ををTとすると T=(2π/d)/(2πroot{m/k})=root{M/(m+M)}. (1)M=2mのとき、T=root{3/2}. (2)M=m/2のとき、T=root{1/3}. (3)M→∞のとき、T=root{M/(m+M)}→1. (4)M→0のとき、T=root{M/(m+M)}→0.

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.1

最近ずいぶんと目立つようになりましたが、問題の丸投げは禁止です。 何がどこまでわかって何が分からないのかを具体的に書いてください。 (a)~(c)は基本的な問題で教科書を読めば解決するはずです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ばねの問題です

    質量m のおもりが上端を天井に固定されたばね定数k の軽いばねの下端に取り付けられて鉛直線上で振動している.ばねはフックの法則に従うものとし,重力加速度の大きさをg とする.ばねの自然の長さを原点として鉛直上向きにx 軸をとる (1) おもりの運動方程式を書きなさい (2)(1)の運動方程式(微分方程式)の一般解を求めよ (3) おもりはどのような運動をするか説明しなさい (1)、(2)は一応できたのですが(3)がまったくわかりません。よければとき方、答えをお願いします

  • 2次元平面におけるばねの運動に関する問題

    x-y平面の原点にばね定数 k のばねがつながれている。ばねの自然長は L で、ばねのもう一方の端には質量 m の質点がつながれている。 1.質点の位置を(x,y)としたとき、ばねが質点に及ぼす力 F のx成分とy成分を求めよ。 2.質点に対するx,y方向の運動方程式をそれぞれ記述せよ。 3.質点の運動方程式を極座標形式に書き換えよ。 4. 3.の運動方程式を解け。 という問題なのですが、困ったことに解答がありません。なので1.がどうしてもxとyであらわす方法が分からないので先に進めなくて困っています。わかる方がいましたらよろしくお願いします。

  • 物理のばねの問題です

    質量m のおもりが上端を天井に固定されたばね定数k の軽いばねの下端に取り付けられて鉛直線上で振動している.ばねはフックの法則に従うものとし,重力加速度の大きさをg とする.ばねの自然の長さを原点として鉛直上向きにx 軸をとる (1) おもりの運動方程式を書きなさい (2)(1)の運動方程式(微分方程式)の一般解を求めよ (3) おもりはどのような運動をするか説明しなさい なんですが解き方と答えを教えてください!お願いします

  • ばねに関して

    ばね定数k、自然長がlのばねの一端を原点に固定し、他端に質量mの質点を定め比例定数bの抵抗(速度に比例)があるときの運動方程式は・・・ F=kl-b(dx/dt)なのでしょうか??

  • ばねの両端に違う質量をつるした単振動

    質量m ,M の物体を ばね定数kのばねの両端にそれぞれつけた。 この時の運動方程式を表せMの位置をX、mの位置をxとする とかいてありました。 解答がいきなり それぞれの運動方程式から mM(X・・ - x・・) = -k(m+M)(X-x-l) となっていました。 これを自分で求めたくて考えました。 mは mx・・ = k(X-x-l)  ・・は二回微分 Mは MX・・= -k(X-x-l) と運動方程式を立ててみましたがあってますか。 lはみずらいですが1じゃなくて自然長のエルです。 もしもこの方程式があってるなら答えをこの式からどうやってつなげばいいのか教えてくれませんか。

  • 『ばねの質量』を考慮に加えた単振動の振動数解析

    ばねの一端に質量mの物体を付け単振動させる。ばね自身の質量をMとする。 このときの振動数は質量m+M/3の質点を付け、ばねの質点を無視した時の振動と同じである事を示せ。 但し、ばねと質点は同じ位相で伸び縮みするものとする。 それぞれの運動方程式を求めようとしたのですが、どうも「ばね自身の質量がある場合」での運動方程式が違っているようで その先に進めません。。。 分かる方は解き方でけでもよろしくお願いします。。

  • 同じばね定数のばね2つと違うばね定数1つの状態

    図のように同じ質量mの物体を両端に同じばね定数真ん中に違うばね定数のもので固定した場合の問題を解いています。 ※変位x_1とx_2では 0<x_1<x_2です そして初めの状態が自然長としています (1)時刻tにおけるおもり1,2についてそれぞれの運動方程式を求めよ (2)ばねの位置エネルギーUをk_1,k_2,x_1,x_2を用いて表せ (3)(2)で導いたUを用いて運動方程式を導け (4)この系の全力学的エネルギーEをm,k_1,k_2,x_1,x_1・,x_2,x_2・を用いて表せ (5)k_1=k k_2=2kとして x_1= A_1coswt x_2= A_2coswtとおき、おもりの基準振動の角振動数を求めよA_1,A_2は振幅である。 (6)(5)の場合の角振動数の場合に成り立つA_1、A_2の関係式を求めそれぞれの基準振動の様子を説明せよ とありました。 両端が固定されている場合でもやはり普通に変位が大きい方をとってk_1は考えないでいいのでしょうか。 (1)は mx_1・・= k_2(x_2-x_1) mx_2・・= -k_2(x_2-x_1) (2)ばねの位置エネルギーUは(1)のようにそれぞれあらわせとは書いていなかったのですが位置エネルギーというのはそもそも同じものとして表すことができるのでしょうかまた別々に表すならば U_1 = -(1/2)k(x_2-x_1)^2 U_2 = (1/2)k(x_2-x_1)^2 でいいのでしょうか。 (3) 位置エネルギーから運動方程式を求めるということから -dU_1/dx = k(x_2-x_1) -dU_2/dx = -k(x_2-x_1) (4) E = K+U より   (1/2)mx_1^2+(1/2)mx_2^2 = k(x_2-x_1) -k(x_2-x_1) (5)(6)もお手上げです。 というかk_1が指定されていることが問題に何度もだされていることから間違いであるのは気づいているのですがではどうしたらいいかがわかりません。 急いでいませんのでご都合のよろしいときに丁寧に教えていただけませんか。 お願いします。

  • 単振動の問題について

    以下の問題の解き方を教えてください。 質点Aは点Qを通過後、質点Bと弾性衝突したあと、質点Bはs>0で単振動する。ばね定数はk、ばねの自然長はs_0とする。 (1) 質点B(質量2m)の衝突前のx軸からの高さをhとする。質点A(質量m)と質点Bの衝突後に質点Aが到達する最高点(X<0側)の高さを求めよ。 (2) 質点Aと質点Bの衝突後、質点Bが単振動を行う際の運動方程式をsで表せ。 (3) 質点Aと質点Bとの衝突の瞬間をt=0として(2)の運動方程式を解け。また、振幅、周期を求めよ。ただし、衝突直前の質点Aの速さをu_Aとする。

  • バネで結ばれた2つの質点の運動について

    バネ定数kのバネで結ばれた2つの質点AおよびBがある。 質点AおよびBの質量をm_A(mに下付きでA, 以後、下付きの文字の前には_を書くことにする)およびm_B、 位置をx_Aおよびx_Bとする。 両質点にバネから力が作用しない際のバネの長さ(自然長)をδとする。 質点はバネの伸縮するx軸方向のみに運動するものと仮定する。 AwwwwwwwwB ーーーーー→x (2質点系のモデルの簡単な図です。分かりにくくてすみません・・・) (1)質点Aおよび質点Bの運動方程式を完成させよ(これは解けました)。 m_A・((d^2(x_A))/(dt^2))=k(x_B-x_A-δ) m_B・((d^2(x_B))/(dt^2))=-k(x_B-x_A-δ) (2)時間t=0において、両質点は静止しているものとし、その際の両質点 の位置をx_A=x_(AI)およびx_B=x_(BI)とし、x_(BI)-x_(AI)≠δとする。 以下の式の右辺を完成させよ(この問題の右辺をどのように書き表す べきか、出題者がどのような答えを求めているのかよく分かりません でしたが、一応速度を書きました)。 dx_A/dt(t=0)=v_(AI) dx_B/dt(t=0)=v_(BI) (3)運動方程式の解である質点AおよびBの位置x_Aおよびx_Bは、6個の定数、X_A、X_B、λ、α、ν、およびCを用いて、 x_A=(X_A)sin(λt+α)+νt+C x_B=(X_B)sin(λt+α)+νt+C+δ と表すことができる。これらの式と(1)の運動方程式より、X_Aおよび X_Bの関係式(連立方程式)を求めよ。 (この問題は、自信はあまりありませんが、問題文で書かれたとおりに計算を行っていったら、 以下のようになりました。) X_A=-(k((x_B)-(x_A)-δ))/((m_A)(λ^2)sin(λt+α)) X_B=k((x_B)-(x_A)-δ)/((m_B)(λ^2)sin(λt+α)) (4)(3)で導いた式に対して、X_AおよびX_Bの両方が0(ゼロ)にならない 解が存在し得ることを用い、λをm_A、m_Bおよびkを用いて表せ。なお、一般性を失うことなく、λ≧0と仮定できる。 (4)の問題が分かりません。 「X_AおよびX_Bの両方が0(ゼロ)にならない解が存在し得ることを用い」 とあるのですが、これの使い方がいまいちよく理解できません。 色々と式変形してみたのですが、どのように変形しても、 m_A、m_Bおよびkのみで表せません。 相対座標に関する運動方程式を求め、そこから相対座標の運動の固有角振動数を求めるのかとも思ったのですが、それでは(3)を利用していないことになります。 ちなみに、相対座標の運動の固有角振動数は√(k/μ)となりました。 ここで1/μ=1/m_A+1/m_Bです。 長々とすみませんでした。どなたか(4)の問題、ご教授のほど、ヨロシクお願いします。 また、答えで何か間違えているところなどありましたら、ご指摘ヨロシクお願いします。

  • ばねのもつエネルギーについて

    質量mの物体がばね定数kのばねでつり下げられている。1.物体をつるさないときのばねの長さをyとすると、物体をつるしたときのつりあいの位置でのばねの長さLを求めよ。2.また、質量mの物体をつるしたときのつりあいの位置を原点とし鉛直下向きにx軸をとる。ばねをつりあいの位置から鉛直下向きにx=Lだけ下げ話したときの物体の運動方程式を求め、3.物体の運動が単振動になることを示し振動の周期Tを求めよ。 この問題で1はmg=-k(L-y)で、L=にすればいいのでしょうか。2は運動方程式をどこまで求めればいいのかわかりません。3.は証明の仕方がよくわからないです。