• ベストアンサー
  • すぐに回答を!

統計学について

統計学の問題です。自分でやってみたのですが、できなくて困っています。解答、解説をよろしくお願いします。問題は以下です。 2つの確率変数X,Yの平均は0であり、それらの分散と共分散はV(X)=9、V(Y)=16、Cov(X,Y)=8であるとする。X、Yを比率w,1-w(0<w<1)で案分して得られる確率変数Z=wX+(1-w)Yの分散を求め、分散を最小にする比率wを求めよ。 ちなみに、答は、w=16/18=8/9の時、最小値80/9を取るです。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数158
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

Z=wX+(1-w)Y EX=EY=0 VX=9 VY=16 Cov(X,Y)=8 とすると EZ=wEX+(1-w)EY=0 9=VX=E(X-EX)^2=EX^2-(EX)^2=EX^2 16=VY=E(Y-EY)^2=EY^2-(EY)^2=EY^2 8=Cov(X,Y)=E(X-EX)(Y-EY)=EXY-EYEX=EXY VZ =E(Z-EZ)^2 =E(Z^2) =E(wX+(1-w)Y)^2 =w^2EX^2+(1-w)^2EY^2+2w(1-w)EXY =w^2(VX)+(1-w)^2(VY)+2w(1-w)Cov(X,Y) =9w^2+16(1-w)^2+16w(1-w) =9w^2+16-32w+16w^2+16w-16w^2 =9w^2-16w+16 =9{w-(8/9)}^2+80/9 ∴ 確率変数Z=wX+(1-w)Yの分散 VZ=9w^2-16w+16 w=8/9のときVZ最小値80/9を取る

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。理解できました。

関連するQ&A

  • 統計学について

    統計学の問題です。平均はできたのですが、分散ができなくて困っています。解答、解説をどうかよろしくお願いします。問題は以下です。 確率変数X、Yは独立で、それらの平均と分散はE(X)=μ1、E(Y)=μ2、V(X)=σ1、V(Y)=σ2であるとする。εはベルヌーイ分布Ber(p)に従う確率変数であり、X、Yとは独立であるとする。そのとき、確率変数Z=εX+(1-ε)Yの平均と分散を求めよ。 ちなみに、答えは、E(Z)=pμ1+(1-p)μ2、V(Z)=pσ1+(1-p)σ2+p(1-p)(μ1-μ2)^2 です。

  • 統計学です。

    統計学の問題で質問があります。(1)は分かったのですが、(2)が分からなくて困っています。どうか、解答、解説をよろしくお願いします。問題は、以下です。 (2)0<=s<t<=1に対し,確率変数X1=#{Xi<=s},X2=#{s<Xi<=t}を考えるとき,(X1,X2)はどのような分布に従うか。またFn(s)とFn(t)の共分散を求めよ。(Fn(t)=1/n#{Xi<=t})

  • 分散と共分散の導出(証明問題)

    統計学の問題で困っています。 どなたか解ける方おられましたら、是非教えていただきたいです。 よろしくお願いします。 ---------- 確率変数X,Yの平均が0、分散が1、共分散がρならば、Z=X-ρYとしたとき E(Z)=0 Var(Z)=1-ρ^2 Cov(Z,Y)=0 となることを示せ。

  • 数学(数理統計学)の質問です。

    数学(数理統計学)の質問です。 2つの確率変数X,Yはそれぞれ密度関数f(x),g(x)をもつ分布に従い、平均E(X)=μ,E(Y)=ν,分散V(X)=σ^2,V(Y)=τ^2をもつとする。さらに、εはベルヌーイ分布Ber(p)に従う確率変数であり、X,Yと独立であるとする。そのとき、確率変数Z=εX+(1-ε)Yはどのような分布に従うか、その確率変数を求めよ。また、平均E(Z)と分散V(Z)を求めよ。 答えはあるのですが、解答に至る過程がわかりません。ご指導よろしくおねがいします。

  • 統計学の問題

    理系の大学一年生です 統計学の問題でいくら考えてもわかりません。 2つあるので、どちらかでも分かれば回答をお願いいたします。 [I]3つの確率変数X,Y,ZはVar(X)=Var(Y)=Var(Z)=1であり、Cov(X,Y)=Cov(Y,Z)=Cov(Z,X)=ρとする このときX+Y+Z,X+Y-Z,X-Y-Zを分散の大きい順に並べよ。 [II]t分布のパーセント点tn(α)とF分布のパーセント点f1,n(α)の間に {tn(α)}^2=f1,n(α) の関係があることを示せ

  • 統計学について

    統計学のことで質問です。答は出せたのですが、それを導きだす仮定で分からないことがあったので。質問は以下です。 確率変数X,Yは独立とする。確率変数Z=min{X,Y}とする。 P(Z>=n)=P(X>=n)P(Y>=n) このように、できるのは、XとYが独立であるからなのでしょうか。理由がいまいちわからなくて。 独立だったら、なぜ、このように変形できるのでしょうか。 どうか、詳しく解説をお願いします。

  • 統計学について

    統計学の問題です。(1)はできたのですが、(2)(3)ができなくて困っています。解答、解説をよろしくお願いします。問題は以下です。 確率変数X、Yは独立でポアソン分布Po(λ),Po(μ)に従うとする。 (2)正の整数nに対して、X+Y=nが与えられた条件の下でX=r(r=0,1,・・・,n)である確率P(X=r | X+Y=n)を求めよ。 (3)X+Y=nが与えられた条件の下でのXの条件付き分布はどのような分布か。そのときの条件付き平均、条件付き分散を求めよ。

  • 統計学について質問です。

    統計学で質問があります。自分でやってみたのですが、答えと一致しませんでした。どうか、解答、解説をよろしくお願いします。 問題:確率変数Xが正規分布N(5,4)に従うとき,Xが母平均μから3以上離れる確立P(|X-μ|>=3)を求めよ。 教科書の解答:0.134

  • 統計学を教えて

    次の問題に苦しんでいます。教えてくれると助かります。 確率変数X.Yは独立で、それらの平均と分散は、E(X)=μ1、E(Y)=μ2、V(X)=σ1^2、V(Y)=σ2^2 であるとする。εはベルヌーイ分布Ber(p)に従う確率変数であり、X.Yとは独立であるとする。そのとき、確率変数Z=εX+(1-ε)Yの平均と分散を求めよ。 出来れば、解説もしてもらえると助かります。

  • 統計学

    ある確率変数x1の平均と分散がそれぞれμとσ^2で与えられているとき、この確率変数を正規化した確率変数y1を求めてください! お願いします!