数学の定理の和訳について困っています

このQ&Aのポイント
  • 初めて英語のテキストを読み始めました。数学独特の言い回しが慣れるまでは難しいなあと感じています。ある定理の一部分の和訳が分からず、定理の意味が理解できません。どなたか正しい和訳を教えていただけないでしょうか?
  • 定理の和訳で困っています。特に、'where C(t,u)=C(u(0,T))•t^(-λ) as t→0' の部分の和訳が分かりません。どのように訳せばよいかお知恵をお借りしたいです。
  • 数学の定理の和訳について困っています。英語のテキストを読み始めたばかりで、数学の表現に慣れるのが難しいと感じています。そして、ある定理の一部分の和訳が分からないため、全体の意味が理解できません。助けていただけると嬉しいです。
回答を見る
  • ベストアンサー

定理の和訳

初めて英語のテキストを読み始めました。 数学独特の言い回しが慣れるまでは難しいなあと感じています。 そして、ある定理の一部分の和訳が分からなく、定理の意味が理解できず困っています。 どなたか正しい和訳を教えていただけないでしょうか? 以下がその定理です。 Theorem1. Let λ=n/(2+n(m-1)), If u≧0 belongs to P(T), then, for each t, u(x,t)≦C(t,u)•(1+|x|^2)^(1/(m-1)), where C(t,u)=C(u(0,T))•t^(-λ) as t→0, and C(u(0,T) is a constant which dependsonly on u(0,T), n and m. ポイント的に言うと、 where C(t,u)=C(u(0,T))•t^(-λ) as t→0 の部分の和訳が分かりません。 whereもこの場合はどう訳せばいいのか。。。 どなたかよろしくお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「正しい和訳」にどのくらい意味があるかはしらん. 「何を言っているか」が理解できることが重要だよね. where はただの関係副詞だからふつ~に「ここで」でもいいんだけど, 日本語として通ることを意識して訳せばいいと思うよ.

qwetyu11
質問者

お礼

すみません、ありがとうございました。 勉強します!

その他の回答 (1)

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.2

前から順番に訳せばいい whereは「ただし」「ここで」という意味. けど・・・定理とやらの中身がよくわからんですわ. というかこれだけみるなら「意味が通じない」 ``C'' ってのが二種類ある? 二変数のC(x,y)と一変数のC(x)で C(x,y)を定義するのにC(x)を使ってる? >C(t,u)=C(u(0,T))•t^(-λ) as t→0, これもおかしい.t->0なら極限なのに,なんでC(t,u)「=」なんだろ λ=n/(2+n(m-1))とする. u≧0なる実数uがP(T)の要素であるならば 任意のtに対して u(x,t)≦C(t,u)•(1+|x|^2)^(1/(m-1)) が成り立つ.ただし t->0のときC(t,u)=C(u(0,T))•t^(-λ)であり C(u(0,T))はu(0,T),n,mにだけ依存する定数である あたりまえだけど前後の内容を考慮しないと 意味はわからない.

qwetyu11
質問者

お礼

すみません、そこらへんの意味は前後の文で自分で理解しております。 和訳、ありがとうございました。 英語も勉強しないとだめですね^^; ありがとうございました。

関連するQ&A

  • この文章の和訳を教えてください。

    In Eq. (2・3) μis defined as          μ=M/( M? +M), (2・4) where M is the mass of the planet, γ, γ_1 and γ_2 are the distances from the center of gravity, the planet (i.e., the origin) and the Sun, respectively, which are given by             r^2=(x+1-μ)^2+y^2, (2・5)             r_1^2=x^2+y^2   (2・6) and              r_2^2=(x+1)^2+y^2.   (2・7) Furthermore, U_0 is a certain constant and, for convenience, is chosen such that U is zero at the Lagrangian point L_2. お手数ですがよろしくお願いいたします。

  • フーリエ級数収束定理とリーマン・ルベーグの定理

    フーリエ級数収束定理の証明を考えているのですが、ある疑問が出て、証明にたどり着けません。 問題の根本はリーマンルベーグの定理から来るものです。 フーリエ級数収束定理の証明を考えると、、最終的に、以下の式の証明を考えなければならないと分かりました。 lim[n→∞]{∫[-T/2→T/2]{(f(u+t)-f(t))/sin(ωu/2)*sin((n+1/2)ωu}du}=0 (ω=2π/T) …(1) この証明にリーマンルベーグの定理を用いるのですが、困った事がおきました。 フーリエ級数収束定理とは次のような定理です。 周期Tの周期関数f(t)が「区分的に滑らか」であるとき、f(t)のフーリエ級数代n部分和S[n](t)に関して、次の極限式が成り立つ。 lim[n→∞]{S[n](t)}=f(t) …(2) (ただし、不連続点では、[右辺]={f(t-0)+f(t+0)}/2) 「区分的に滑らか」と「区分的に連続」の定義は次のようになります。 (※)「区分的に滑らか」…有限個の微分不可点(傾きが急変する点や不連続点)t[k](k=1,2,3,…,n)が存在するもののそれ以外の点では連続かつ有界。また、 tkの近傍(t[k]±0)において、t[k]-0 における左側微分係数(f'-(t[k]-0))及び、t[k]+0 における右側微分係数(f'+(t[k]+0))が存在する。 (微分不可点を除いて、関数とその導関数が有界であれば区分的に滑らかであるといえる。) (※)「区分的に連続」…有限個の不連続点tkを除いて連続かつ有界。また、tkにおける左側極限値 f(t[k]-0) 及び、右側極限値 f(t[k]+0) が存在する。 lim[n→∞]{∫[-T/2→T/2]{(f(u+t)-f(t))/sin(ωu/2)*sin((n+1/2)ωu}du}=0 ((1)式) が成り立つことを示すには、リーマン・ルベーグの定理(補題)を使うと思います。このリーマン・ルベーグの定理とは、 関数f(x)が区間[a,b]で、「ある性質」を持つとき、次の極限式が成立する。 ・lim[n→∞]{∫[a→b]{f(x)sin(nx)}=0 …(3) ・lim[n→∞]{∫[a→b]{f(x)cos(nx)}=0 という定理です。最終的には、このリーマン・ルベーグの定理(補題)が証明でき、(1)式に応用することができれば良いのではないかという結論に至りました。 リーマン・ルベーグの定理の証明について、いくつかのサイトを参考にしたのですが、f(x)が持つ「ある性質」の部分が統一されておらず、 ・区分的に滑らか ・区分的に連続 の2通りの流儀があるようでした。 リーマン・ルベーグの定理の成立条件として「f(x)が区分的に滑らか」を採用した場合、 ∫[a→b]{f(x)sin(nx)}=[a→b](1/n)[-f(x)cos(nx)]+∫[a→b](1/n){f'(x)cos(nx)} から、f(x)及びf'(x)が[a,b]で有界ならば、n→∞としたとき零になり、リーマン・ルベーグの定理が成立することが分かります。 これを(1)式に対して適用します。(3)式のf(x)は、(1)式では、(f(u+t)-f(t))/sin(ωu/2)です。 (f(u+t)-f(t))/sin(ωu/2)=g(u) とおくと、g(u)およびg'(u)が有界であることを言うことが必要になります。 g(u)=(f(u+t)-f(t))/u*u/sin(ωu/2) , lim[u→0]g(u)=2/ω*f'(t) より、 [-T/2≦u≦T/2]において、f(t)及びf'(t)が発散しなければ、つまりf(t)が周期T内で「区分的に滑らか」ならば、g(u)は有界であることが言えそうなのです が、g'(u)が[-T/2≦u≦T/2]で有界になることが自分には証明できませんでした。もし証明できるならば教えてください。 一方で、リーマン・ルベーグの定理の成立条件として「f(x)が区分的に連続」を採用した場合ですが、この定理の証明に http://tmlaboratory.at-ninja.jp/doc/Riemann-Lebesgue_lemma/node3.html http://homepage3.nifty.com/rikei-index01/ouyoukaiseki/riemanrubeg.html を参考にしながら次のように検討しました。 区分的に連続の関数f(x)が閉区間[a,b]で有限個(M個)の不連続点(x=t[k](k=1,2,…,M))を持つとする。 [a,b]内で連続となる区間はM+1個できる。この連続区間を、取りうるxの小さいほうから順にT[k](k=1,2,…,M,M+1)と書く。 各区間T[k]の範囲は、 T[k]:[t[k-1]≦x≦t[k]] (k=1,2,…,M+1) (ただし、t[0]=a,t[M+1]=b) 各連続区間T[k]上の連続関数をf[k](x)(k=1,2,…,M+1)とする。 f(x)は[a,b]で有界だから |f(x)|≦F , |f[k](x)|≦F …(4) を満たす実数Fが存在する。 区間T[k]上でf[k](x)に対するリーマン・ルベーグの定理が成り立つことが言えれば、 [a,b]上のf(x)に対するリーマン・ルベーグの定理が成り立つことが言える。 f(x)の任意の連続区間T[k]=[t[k-1],t[k]]をN等分し、T[k]上の分割点を小さい方より、 t[k-1]=x[0]<x[1]<x[2]<…<x[l-1]<x[l]<…<x[N-1]<x[N]=t[k] とおく。 分割した小区間の長さを⊿xすると ⊿x=x[l]-x[l-1] (l=1,2,…,N) =(t[k]-t[k-1])/N すると求める積分は、 ∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx=Σ[l=1,N]{∫[x[l-1]→x[l]]{f[k](x)sin(nx)}dx} …(5) となる。このときxの範囲は、(x[l-1]≦x≦x[l])である。 (5)式に対し、その大小関係を考えていく。 |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx| ≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|・|sin(nx)|dx+|f[k](x[l])|・|∫[x[l-1]→x[l]]{sin(nx)}dx|} …(6) |sin(nx)|≦1 |f[k](x)|≦F より (6式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|・1・dx+F|∫[x[l-1]→x[l]]{sin(nx)}dx|} ≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx+F/n*(|cos(nx[l-1])|+|cos(nx[l])|)} …(7) |cos(nx[l-1])|≦1 |cos(nx[l])|≦1 より (7式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx+2F/n} =Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx}+Σ[l=1,N]{2F/n} …(8) f[k](x)の連続性から (x[l-1]≦x≦x[l])の範囲のx、及び任意の正の実数εに対して、 |x-x[l]|≦⊿x=x[l]-x[l-1]=(t[k]-t[k-1])/N ならば |f[k](x)-f[k](x[l])|≦ε を満たす⊿xがただ一つ定まる。このとき分割数Nも適切に取る。 (8)式に対し (8式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]{ε}dx}+2NF/n =Σ[l=1,N]{ε(x[l]-x[l-1])}+2NF/n =Nε(x[l]-x[l-1])+2NF/n =ε(t[k]-t[k-1])+2NF/n よって |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1])+2NF/n …(9) (9)式について 2NF/n≦ε となるようにnを大きく取れば |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1])+2NF/n ≦ε(t[k]-t[k-1])+ε =ε(t[k]-t[k-1]+1) 最終的に |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1]+1) …(10) の関係が言える。 参照したサイトでは、εは任意に取ることができるから、n→∞とすればε→0より lim[n→∞]|∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|=0 となり、リーマン・ルベーグの定理が成り立つと結論付けていますがε→0とするとき、 ∀ε>0,∀x[l]>0∈T[k],∃⊿x>0 s.t.∀x∈⊿x=x[l]-x[l-1], |x-x[l]|≦⊿x⇒|f[k](x)-f[k](x[l])|≦ε となるように⊿xを決めているから、ε→0 とするとき同時に ⊿x→0 になり、分割数Nを∞にする必要がでてきます。 結局はn→∞,ε→0としても、⊿x→0,N→∞としなければならず、 2NF/n≦εの関係からlim[n→∞]{2NF/n} (≦ε) は零に収束しないような気がします。 どうすれば答えが導けるでしょうか。

  • 比較定理についてです。

    <比較定理> ΩをR^n上の有界領域とし、Ω*をΩに閉包をとった領域、∂Ωを境界とする。 また、aj(t,x),b(t,x)は[0,T]×Ω*の実数値連続関数とする。 このとき Ut-ΔU=Σ(j=1~n)aj(t,x)Uxj+b(t,x)U+f(t,x) (0<t≦T,x∈Ω) U(t,x)=0 (0<t≦T,x∈∂Ω) U(0,x)=φ(x) (x∈Ω) の解について考える。 初期条件を2通り、φ1(x)、φ2(x)としたときの解をそれぞれU1,U2とする。 このときφ1(x)≦φ2(x) (x∈Ω)ならばU1≦U2 (0<t≦T、x∈Ω) が成り立つ。 この比較定理の証明はどのようにできるのでしょうか? どなたか証明を解説お願いいたします。 (~を使う、~参照ではなく、詳しい証明のみ受け付けさせていただきます) 質問文に誤りがありましたらご指摘ください。 すぐに補足させていただきます。

  • テイラーの定理→マクローリンの定理

    テイラーの定理 f(b)=f(a)+f'(a)(b-a)+{f''(a)/2!}(b-a)^2+・・・・・・+{f^(n-1)(a)/(n-1)!}(b-a)^(n-1)+{f^(n)(c)/n!}(b-a)^nにおいて a=0,b=x,c=θxとすると、マクローリンの定理 f(x)=f(0)+f'(0)x+{f''(0)/2!}x^2+・・・・・・+{f^(n-1)(0)/(n-1)!}x^(n-1)+{f^(n)(θx)/n!}x^n と教科書にかいてあります。 その下に、いろいろな説明があって sinx=x-(1/3!)x^3+(1/5!)x^5-・・・・・+{(-1)^(m-1)/(2m-1)!}x^(2m-1)+{(-1)^m sinθx/(2m)!}x^2m cosx=1-(1/2!)x^2+(1/4!)x^4-・・・・・+{(-1)^m/(2m)!}x^(2m)+{(-1)^(m+1) cosθx/(2m+2)!}x^(2m+2) とあるのですが、sinxについての一番最後の項は分子(2m+1)!、xの次数は2m+1だと思うのですが、これは間違いですか?

  • 正しい和訳

    人によって 和訳が違うので、英語として正しい和訳にして下さい。 Avril.Nobody's Homeの一部。 こちらです。 I couldn't tell you Why she felt that way She felt it everyday I couldn't help her I jast watched her make The same mistakes again What's wrong,what's wrong now Too many,too many problems Don't know where she belongs Where she belongs ここまでです。 (初心者)勉強中なので、よろしくお願いします。

  • ハイネボレルの定理から

    領域Gにその閉包までが含まれる有界領域 /   _ / G':G'⊂GをGの部分領域と呼び、記号G'⊂Gであらわすことにします。 / _ /(G'はG'の閉包です) このとき、G'ε⊂Gとなるε>0の存在がハイネボレルの定理からわかるというのですが、なぜなのかわからなくて困っています。 ただし、G'εはG'のε-近傍で、G'ε=  ∪  U(x;ε) /                    x∈G'ε / ここで、U(x;ε)はxを中心とする半径εの開球です。 ハイネボレルの定理というのは、 「コンパクト集合Kの任意の開被覆から、有限個の開集合からなる部分被覆を  選び出すことができる。」 というものです。 なお、ここで言っているxはn次元ユークリッド空間における点をあらわしたものです。 ハイネボレルの定理の証明もちょこっと気になるところなのですが‥‥

  • 定理の証明

    テイラーの定理・展開で躓いた部分あります。力不足かな・・・先に進めないので質問させてください。 【テイラーの定理の証明】 f(xは、n≧0、[a,b]でn+1階微分可能で、x,x0∈[a,b]とする)  f(x)=Pn(x)+Rn+1(X)…(1)  Pn(x)=f(x0)+[(x-x0)/1!]f'(x0)+…+[(x-x0)^n/n!]f^(n)(x0)…(2) ↑                         n階微分 Rn+1(x)=(1/n!)∫(x-t)^n f^(n+1)(t) dt (積分範囲は、x0からx)…(3) ここでの証明では、(3)-(1)を得るために恒等式   f(x)=f(x0)+∫f'(t)dt (積分範囲は、x0からx) と(1)の微分結果を利用するようです。 様々な参考書を見たのですが、この方法がまったく意味不明なんです。説明不足な点があるかと思いますが、回答をいただければと思います。

  • オイラーの定理(整数)

    nは自然数、aは整数とする。aとnが互いに素な時、a^{φ(n)}≡1( mod n)が成り立つ。 ここでφ(n)は「n以下の自然数でnと互いに素なものの個数を表す」"オイラーの関数"である。 この定理の例証で、例えばn=45=3^(2)*5のときa=7として考えます。 φ(45)=φ(3^2)*φ(5)となり、φ(3^2)=6、φ(5)=4です。 フェルマーの小定理よりmod 5 で、7^φ(45)={7^φ(5)}^φ(3^2)は {7^φ(5)}≡1 (mod 5)より、7^φ(45)≡1 (mod 5 )・・・(1)になり。 次に7^φ(3^2)≡1(mod 3^2)をしるします。フェルマーの小定理より mod 3 で 7^(3-1)≡1なので7^(3-1)=3k+1、 7^φ(3^2)={7^(3-1)}^3=(3k+1)^3=(3k)^3+3C1(3k)^2+3C2(3k)+1 3C1、3C2は3の倍数なので、7^φ(3^2)≡1(mod 3^2)・・・(2)です。 よって、7^φ(45)={7^φ(3^2)}^φ(5)≡1(mod 3^2)となります。 ここからが分からない箇所なのですが、中国の剰余定理から、 (1)かつ(2)⇔7^φ(45)≡■(mod 3^(2)*5)となる■が、1つだけ存在します。と書いてありますが、自分は中国の剰余定理は、m、nを互いに素な自然数とする。 x≡a(mod m)かつ x≡b(mod n)を満たす整数xはmnを法として、ただ1つ存在する。と書いてあることから、割る数が違えば、a,bのように余りもちがう場合に、整数xはmnを法として、ただ1つ存在する。と思っていたのですが、 この例証では、■≡7^φ(45) (mod 5)かつ■≡7^φ(45) (mod 3^2)のような余りが 一緒の場合を同時に満たす■を求めているような気がして、中国の剰余定理があてはまるか不安です。 自分の考えの間違いや、余りが一緒の場合でも中国の剰余定理が使えるかを教えてください。お願いします。 本では、■=1のとき(1)、(2)が成り立つので、■=1だとわかります。 よって7^φ(45)≡1(mod 45 )となることがしるされました。としめくくっています。

  • 二項定理の拡張・変形

    http://ja.wikipedia.org/wiki/%E4%BA%8C%E9%A0%85%E5%AE%9A%E7%90%86 を元に、二項定理の拡張・変形について考えています。 nが自然数のとき、 (x+y)^n=Σ[k=0,n]C(n,k)(x^k)(y^(n-k)) が普通の二項定理です。 αを実数として、|x|<1のとき、 (1+x)^α=Σ[k=0,∞]C(α,k)x^k はニュートンが考えたといわれています。 特別な場合として、負のベキは、 1/(1-x)^n=Σ[k=0,∞]H(n,k)x^k と重複組合せを用いて表されます。 また、項を増やした、 (x[1]+x[2]+…+x[k])^n=Σ[p∈N^k,|p|=n]C(n,p)x^p は多項定理といわれています。 指数のほうを和にすると、 x^(n+m)=x^n x^m 指数法則です。 で、x、yをいじくって、 Π[k=1,2]{cos(θk)+isin(θk)} ={cos(θ1)+isin(θ1)}{cos(θ2)+isin(θ2)} ={cos(θ1)cos(θ2)-sin(θ1)sin(θ2)}+i{sin(θ1)cos(θ2)+cos(θ1)sin(θ2)} といったものを考えると2つの文字の加法定理です。 n個の文字の加法定理をうまく記述するにはどうしたらよいのでしょうか? Π[k=1,n]{cos(θk)+isin(θk)} または Π[k=1,n]{x[k]+y[k]} の展開ををうまく記述するにはどうしたらよいのでしょうか?

  • 中国剰余定理 3数

    余りが条件式を満たすがわからないので質問します。 p,q,rどの2つをとっても、互いに素な自然数とする。a,b,cを任意の整数とする。このとき、 x≡a mod(p),x≡b mod(q),x≡c mod(r) を満たす整数xが、0からpqr-1までの間に1つ存在する。この定理の証明は、 (qr)s≡1 mod(p),(rp)t≡1 mod(q),(pq)u≡1 mod(r),を満たすs,t,uを求めることから始まります。sであれば、(qr)s+py=1・・・(1)という1次不定方程式を解くことで、得られます。q,rがpと互いに素であるから、qr,pが互いに素なので(1)を満たすs,yは存在します。同様にt,uが得られます。x=a(qr)s+b(rp)t+c(pq)u・・・(2)とおけば、xは条件式を満たします。(2)をpで割った余りは、a*1+0+0=aとなります。qで割れば余りb,rで割れば余りc,となります。ここからがわからない箇所です。このxをpqrで割った余りも条件式をみたします。 まず、自分の計算では、x=a(qr)s+b(rp)t+c(pq)u=pqr{as(1/p)+bt(1/q)+cu(1/r)}となり余りが出ません。そして条件式x≡a mod(p),x≡b mod(q),x≡c mod(r) を満たしているとも思えません。どなたか自分の考えの間違いを教えてください。お願いします。