• 締切済み

比較定理についてです。

<比較定理> ΩをR^n上の有界領域とし、Ω*をΩに閉包をとった領域、∂Ωを境界とする。 また、aj(t,x),b(t,x)は[0,T]×Ω*の実数値連続関数とする。 このとき Ut-ΔU=Σ(j=1~n)aj(t,x)Uxj+b(t,x)U+f(t,x) (0<t≦T,x∈Ω) U(t,x)=0 (0<t≦T,x∈∂Ω) U(0,x)=φ(x) (x∈Ω) の解について考える。 初期条件を2通り、φ1(x)、φ2(x)としたときの解をそれぞれU1,U2とする。 このときφ1(x)≦φ2(x) (x∈Ω)ならばU1≦U2 (0<t≦T、x∈Ω) が成り立つ。 この比較定理の証明はどのようにできるのでしょうか? どなたか証明を解説お願いいたします。 (~を使う、~参照ではなく、詳しい証明のみ受け付けさせていただきます) 質問文に誤りがありましたらご指摘ください。 すぐに補足させていただきます。

noname#157357
noname#157357

みんなの回答

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

丸投げはなく、自分でやってみた過程を少しは書いた 詳しい質問のみ受け付けさせていただきます。

noname#157357
質問者

補足

U(t,x)=U2(t,x)-U1(t,x)≧0 を示せばいいということしか見通しがつかなかったので 丸投げさせていただきました。

関連するQ&A

  • ハイネボレルの定理から

    領域Gにその閉包までが含まれる有界領域 /   _ / G':G'⊂GをGの部分領域と呼び、記号G'⊂Gであらわすことにします。 / _ /(G'はG'の閉包です) このとき、G'ε⊂Gとなるε>0の存在がハイネボレルの定理からわかるというのですが、なぜなのかわからなくて困っています。 ただし、G'εはG'のε-近傍で、G'ε=  ∪  U(x;ε) /                    x∈G'ε / ここで、U(x;ε)はxを中心とする半径εの開球です。 ハイネボレルの定理というのは、 「コンパクト集合Kの任意の開被覆から、有限個の開集合からなる部分被覆を  選び出すことができる。」 というものです。 なお、ここで言っているxはn次元ユークリッド空間における点をあらわしたものです。 ハイネボレルの定理の証明もちょこっと気になるところなのですが‥‥

  • ポアソン方程式について

    Ω⊂R^2を有界領域とし、以下のポアソン方程式を考えます。 Δu=f (x∈Ω)--------* ここでG(x)=1/2π・log|x|は基本解です。 ----------------------------------------------------------- このとき、以下の定理が成り立ちます。 「fはR^2でヘルダー連続でsuppfは有界ならば U(x)=∫[R^2]G(x-y)f(y)dyはR^2でC^2級で、Δu=f (x∈R^2)である」 この定理の証明はできたのですが、 「この定理はそもそも何故成り立つのか」 というのを基本解などの性質などから簡潔に説明せよという課題が出ました。 抽象的でよく分からずにいます。 この定理はそもそもどのような根拠から成り立つのでしょうか。 そして、なぜこの定理なのでしょうか。 よろしければどなたか解説をお願い致します><

  • フーリエ級数収束定理とリーマン・ルベーグの定理

    フーリエ級数収束定理の証明を考えているのですが、ある疑問が出て、証明にたどり着けません。 問題の根本はリーマンルベーグの定理から来るものです。 フーリエ級数収束定理の証明を考えると、、最終的に、以下の式の証明を考えなければならないと分かりました。 lim[n→∞]{∫[-T/2→T/2]{(f(u+t)-f(t))/sin(ωu/2)*sin((n+1/2)ωu}du}=0 (ω=2π/T) …(1) この証明にリーマンルベーグの定理を用いるのですが、困った事がおきました。 フーリエ級数収束定理とは次のような定理です。 周期Tの周期関数f(t)が「区分的に滑らか」であるとき、f(t)のフーリエ級数代n部分和S[n](t)に関して、次の極限式が成り立つ。 lim[n→∞]{S[n](t)}=f(t) …(2) (ただし、不連続点では、[右辺]={f(t-0)+f(t+0)}/2) 「区分的に滑らか」と「区分的に連続」の定義は次のようになります。 (※)「区分的に滑らか」…有限個の微分不可点(傾きが急変する点や不連続点)t[k](k=1,2,3,…,n)が存在するもののそれ以外の点では連続かつ有界。また、 tkの近傍(t[k]±0)において、t[k]-0 における左側微分係数(f'-(t[k]-0))及び、t[k]+0 における右側微分係数(f'+(t[k]+0))が存在する。 (微分不可点を除いて、関数とその導関数が有界であれば区分的に滑らかであるといえる。) (※)「区分的に連続」…有限個の不連続点tkを除いて連続かつ有界。また、tkにおける左側極限値 f(t[k]-0) 及び、右側極限値 f(t[k]+0) が存在する。 lim[n→∞]{∫[-T/2→T/2]{(f(u+t)-f(t))/sin(ωu/2)*sin((n+1/2)ωu}du}=0 ((1)式) が成り立つことを示すには、リーマン・ルベーグの定理(補題)を使うと思います。このリーマン・ルベーグの定理とは、 関数f(x)が区間[a,b]で、「ある性質」を持つとき、次の極限式が成立する。 ・lim[n→∞]{∫[a→b]{f(x)sin(nx)}=0 …(3) ・lim[n→∞]{∫[a→b]{f(x)cos(nx)}=0 という定理です。最終的には、このリーマン・ルベーグの定理(補題)が証明でき、(1)式に応用することができれば良いのではないかという結論に至りました。 リーマン・ルベーグの定理の証明について、いくつかのサイトを参考にしたのですが、f(x)が持つ「ある性質」の部分が統一されておらず、 ・区分的に滑らか ・区分的に連続 の2通りの流儀があるようでした。 リーマン・ルベーグの定理の成立条件として「f(x)が区分的に滑らか」を採用した場合、 ∫[a→b]{f(x)sin(nx)}=[a→b](1/n)[-f(x)cos(nx)]+∫[a→b](1/n){f'(x)cos(nx)} から、f(x)及びf'(x)が[a,b]で有界ならば、n→∞としたとき零になり、リーマン・ルベーグの定理が成立することが分かります。 これを(1)式に対して適用します。(3)式のf(x)は、(1)式では、(f(u+t)-f(t))/sin(ωu/2)です。 (f(u+t)-f(t))/sin(ωu/2)=g(u) とおくと、g(u)およびg'(u)が有界であることを言うことが必要になります。 g(u)=(f(u+t)-f(t))/u*u/sin(ωu/2) , lim[u→0]g(u)=2/ω*f'(t) より、 [-T/2≦u≦T/2]において、f(t)及びf'(t)が発散しなければ、つまりf(t)が周期T内で「区分的に滑らか」ならば、g(u)は有界であることが言えそうなのです が、g'(u)が[-T/2≦u≦T/2]で有界になることが自分には証明できませんでした。もし証明できるならば教えてください。 一方で、リーマン・ルベーグの定理の成立条件として「f(x)が区分的に連続」を採用した場合ですが、この定理の証明に http://tmlaboratory.at-ninja.jp/doc/Riemann-Lebesgue_lemma/node3.html http://homepage3.nifty.com/rikei-index01/ouyoukaiseki/riemanrubeg.html を参考にしながら次のように検討しました。 区分的に連続の関数f(x)が閉区間[a,b]で有限個(M個)の不連続点(x=t[k](k=1,2,…,M))を持つとする。 [a,b]内で連続となる区間はM+1個できる。この連続区間を、取りうるxの小さいほうから順にT[k](k=1,2,…,M,M+1)と書く。 各区間T[k]の範囲は、 T[k]:[t[k-1]≦x≦t[k]] (k=1,2,…,M+1) (ただし、t[0]=a,t[M+1]=b) 各連続区間T[k]上の連続関数をf[k](x)(k=1,2,…,M+1)とする。 f(x)は[a,b]で有界だから |f(x)|≦F , |f[k](x)|≦F …(4) を満たす実数Fが存在する。 区間T[k]上でf[k](x)に対するリーマン・ルベーグの定理が成り立つことが言えれば、 [a,b]上のf(x)に対するリーマン・ルベーグの定理が成り立つことが言える。 f(x)の任意の連続区間T[k]=[t[k-1],t[k]]をN等分し、T[k]上の分割点を小さい方より、 t[k-1]=x[0]<x[1]<x[2]<…<x[l-1]<x[l]<…<x[N-1]<x[N]=t[k] とおく。 分割した小区間の長さを⊿xすると ⊿x=x[l]-x[l-1] (l=1,2,…,N) =(t[k]-t[k-1])/N すると求める積分は、 ∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx=Σ[l=1,N]{∫[x[l-1]→x[l]]{f[k](x)sin(nx)}dx} …(5) となる。このときxの範囲は、(x[l-1]≦x≦x[l])である。 (5)式に対し、その大小関係を考えていく。 |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx| ≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|・|sin(nx)|dx+|f[k](x[l])|・|∫[x[l-1]→x[l]]{sin(nx)}dx|} …(6) |sin(nx)|≦1 |f[k](x)|≦F より (6式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|・1・dx+F|∫[x[l-1]→x[l]]{sin(nx)}dx|} ≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx+F/n*(|cos(nx[l-1])|+|cos(nx[l])|)} …(7) |cos(nx[l-1])|≦1 |cos(nx[l])|≦1 より (7式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx+2F/n} =Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx}+Σ[l=1,N]{2F/n} …(8) f[k](x)の連続性から (x[l-1]≦x≦x[l])の範囲のx、及び任意の正の実数εに対して、 |x-x[l]|≦⊿x=x[l]-x[l-1]=(t[k]-t[k-1])/N ならば |f[k](x)-f[k](x[l])|≦ε を満たす⊿xがただ一つ定まる。このとき分割数Nも適切に取る。 (8)式に対し (8式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]{ε}dx}+2NF/n =Σ[l=1,N]{ε(x[l]-x[l-1])}+2NF/n =Nε(x[l]-x[l-1])+2NF/n =ε(t[k]-t[k-1])+2NF/n よって |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1])+2NF/n …(9) (9)式について 2NF/n≦ε となるようにnを大きく取れば |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1])+2NF/n ≦ε(t[k]-t[k-1])+ε =ε(t[k]-t[k-1]+1) 最終的に |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1]+1) …(10) の関係が言える。 参照したサイトでは、εは任意に取ることができるから、n→∞とすればε→0より lim[n→∞]|∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|=0 となり、リーマン・ルベーグの定理が成り立つと結論付けていますがε→0とするとき、 ∀ε>0,∀x[l]>0∈T[k],∃⊿x>0 s.t.∀x∈⊿x=x[l]-x[l-1], |x-x[l]|≦⊿x⇒|f[k](x)-f[k](x[l])|≦ε となるように⊿xを決めているから、ε→0 とするとき同時に ⊿x→0 になり、分割数Nを∞にする必要がでてきます。 結局はn→∞,ε→0としても、⊿x→0,N→∞としなければならず、 2NF/n≦εの関係からlim[n→∞]{2NF/n} (≦ε) は零に収束しないような気がします。 どうすれば答えが導けるでしょうか。

  • 関数の拡張について

    Ω⊂R^2を有界領域、∂Ωは滑らか、 f(x)をΩの閉包でヘルダー連続な関数とします。 このf(x)をR^2上で台が有界なものに拡張していきます。 ∂Ωが滑らかでΩが有界であることから、 ξ∈∂Ωにおける外向き単位法線ベクトルV(ξ)はξの滑らかな関数である。----(1) また∂Ωの近傍はx=ξ+sV(ξ)と表される。------(2) N(δ)={ξ+sV(ξ)∈R^2 | ξ∈∂Ω、-δ<s<δ}とする。 とくに外側の点は0<s<δに対応する。------(3) ただしδ>0は小さくとる。 また、χ(s)をR上の一変数の滑らかな関数で、χ(s)=1(s≦0),χ(s)=0(s≧δ)を満たすものとする。 そしてf*を次の通りに定める f*=f(x) (x∈Ω) χ(s)f(ξ) (x=ξ+sV(ξ),ξ∈∂Ω、0<s<δ) 0 (x∈R^2\(Ωの閉包∪N(δ))) とおく。 このときf(x)がΩの閉包でヘルダー連続ならばf*はR^2でヘルダー連続となる。----(4) このとき、(1)(2)(3)は何故このようになるのか理解できず困っております。 (4)については証明が見つけることができなかったので証明をお願いしたいと思っています。 どなたかお答えいただければ幸いです。

  • 微分と積分の順序交換

    熱方程式 Ut-Uxx=0 (t>0,x∈R) の基本解を (4πt)^(-1/2)・exp(-x^2/4t)=K(t,x)とおきます。 φ(x)をR上有界な一様連続な関数と仮定し、 U(t,x)=∫(R~R)K(t,x-y)φ(y)dy (y∈R)とおきます。 このとき (∂/∂x)U(t,x)=∫(R~R)(∂/∂x)K(t,x-y)φ(y)dy を満たすことを示し、U(t,x)が熱方程式を満たすことを示そうとしています。 そこで、 以下の微分と積分を入れ替える定理を使って証明しようとしています。 定理1 h=h(x,y)は(a,b)×Rで定義された関数で、次の性質を持つ (1)ほとんどすべてのyについてhはxの関数とみて(a,b)でC1級である (2)∂h/∂xは(a,b)×Rで可積分とする (3)少なくとも1点c∈(a,b)でh(c,y)はR上可積分とする (4)∫(R~R)(∂h/∂x)dyは区間(a,b)の各点xで連続とする このとき∫(R~R)(∂h/∂x)dy=∂/∂x∫(R~R)h(x,y)dyとなる。 この定理を使って、Uが熱方程式を満たすことに苦戦しています。 どなたか行間の空かない詳しい証明をよろしくお願いします。

  • 中間値の定理について

    中間値の定理は f(a)とf(b)の符号が異なれば(a,b)に少なくとも1つは解をもつ ですよね? この時f(x)が単調増加または単調減少ならば解はちょうど一つに限られますよね? これは中間値の定理に含まれませんか? 証明なしに用いてもよいのでしょうか…

  • ラプラス方程式の境界値問題

    ∂^2u/∂x^2 + ∂^2u/∂y^2 + ∂^2u/∂z^2 = 0  in Ω ∇u・n = 0  on Ωの境界 ( nは境界の外向き法線ベクトルです) Ωを3次元空間内の有界領域としたときに、上のラプラス方程式の境界値問題の解はなぜ1つではないんでしょうか? すいませんが教えてくれませんか?

  • 最大値と上限

    以下の最大値原理を考えています。 有界領域Ω⊂R^2に対して実数値関数u(x)はΩの閉包Ω*で連続かつΩで連続とする。 このとき成り立つ、下の(1)(2)は同値らしいのですが、 上限と最大値は違うものなのに、何故でしょうか? 仮定のもとでuは境界で最大値をとる、というのが最大値原理と理解しています。 なぜそれが(1)のようなsupで表記できるのですか? (1)sup[x∈Ω]u(x)=sup[x∈∂Ω]u(x) (Ωでのuの上限は、Ωの境界∂Ωでのuの上限と等しい) (2)max[x∈Ω*]u(x)=max[x∈∂Ω]u(x) (Ωでのuの最大値は、Ωの境界∂Ωでのuの最大値と等しい) どなたか解説をよろしくお願い致します。

  • 熱伝導方程式の解について

    偏微分方程式初心者です。 熱伝導方程式の解についての質問です。 Ut‐Uxx=0 (t>0, x in R) この解をU(t,x)とした時、U(t,x-y) (y in R) も解であることを示したいです。 どなたか詳しい証明をよろしくお願い致します。 (できれば証明をはしょらず説明していただきたいです・・・)

  • 傾きについてです。

    Ω⊂R^nは有界領域とします。 また、T>0とします。 u(t,x)∈(0,T]×Ωがある点(τ,z)∈(0,T]×Ωでuが正の最大値をとると仮定します。 このとき (∂u/∂t)(τ,z)≧0 となるのは何故なのでしょうか? (∂u/∂x)(τ,z)=0となるのに、tについての偏微分が0以上になる意味が理解できません。 どなたか解説をよろしくお願い致します。