• ベストアンサー
  • すぐに回答を!

標準偏差について

ある正規分布(標準偏差a)に従う集団からある正規分布(標準偏差b)に従う集団を引いたもの(または足したもの)の正規分布の標準偏差cは、aとbを用いてどのように表せるのでしょうか? 確か数式があったと思うのですが、ど忘れしました。 平均はただ足しただけだったと思うのですが、 標準偏差は足してルートとったりとかしてたような気が… ネットで調べてもうまく見つからないので、 覚えている方がいればお願いします。 稚拙な説明で申し訳ありません。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数131
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • selfer
  • ベストアンサー率76% (104/136)

こんにちは. まず約束事は以下の通りとします. 変数Aにおいて;標準偏差A,分散A(=標準偏差A^2) 変数Bにおいて;標準偏差B,分散B(=標準偏差B^2) さらに… r=変数AとBの(ピアソンの積率)相関係数 ※「^2」は「二乗」を意味する 以上の約束事を使って表現すれば…… ・A±Bの分散=分散A+分散B±2×r×標準偏差A×標準偏差B となります. かりに,正規分布Aと正規分布Bが独立であるならば,r=0となりますので  A+BあるいはA-Bの分散=分散A+分散B と同一の値になります. なお,平均値の場合はご指摘の通り,以下のようになります.  A±Bの平均値=平均値A±平均値B

共感・感謝の気持ちを伝えよう!

質問者からのお礼

A-Bに関して、AとBが独立の場合、 A+Bの場合と同じ結果になるというのは 非常にためになりました。 どうもありがとうございました!

関連するQ&A

  • 標準偏差の問題です

    平均値U=10、標準偏差α=2となる正規分布で、任意に取り出した1つが8と16 との間に入る確率を標準正規分布表より求めなさい。

  • ワイブル分布の標準偏差

    統計初心者です。 ワイブル確率紙のプロットからmの値と平均寿命、標準偏差が求められるようですが、標準偏差はどのように使うのでしょうか?正規分布していないものの標準偏差とは?何でしょうか? 平均寿命±3シグマで99.7%がその範囲に入る??(正規分布ではないので違うと思いますが?) よろしくご教授願います。

  • 標準偏差と正規分布との関係

     各サンプル値から平均値を引き算して,2乗して全て合計して,サンプル数で割ってルートして計算される標準偏差(σ)の式が成立する条件は,元となるサンプル値が正規分布に従うことが条件となるのでしょうか? 正規分布とσとの関係の説明はよく見るのですが,σを計算する上での前提が正規分布でないといけないかどうかという内容については,いろいろ検索しましたが見つけることができませんでした。  また,例えば対数正規分布に従う場合にはσの式が別途ありますが,どの分布にも当てはまらないランダムなサンプルの場合の標準偏差というのはどのように計算するのでしょうか?あくまでもある分布に近似的にあてはめて,その分布に対応する標準偏差の式を用いて計算するということが確率統計上常識なのでしょうか? 上記2点,超基本的なことが理解できていません。よろしくお願いします。

  • 標準偏差

    小カテゴリがどこだかわからないのでこちらで質問させていただきます。 部品A1つの重量は母平均が50グラム、母標準偏差が3グラムの正規分布に従っている。 部品Aをランダムに400個を採取し、箱詰め。 箱の母平均1000グラムで母標準偏差は80グラムでばらついている、 部品を箱詰め下後の総重量の母平均は21000グラムになる。 この場合の母標準偏差はいくつか? この問題の答えは〔100〕なのですが、 解き方がわかりません、よろしくお願いします。

  • 最大値の平均と標準偏差

    仕事で解が解けずに悩んでいます。助けてください。 平均値E(1)~E(N) 標準偏差V(1)~V(N)の正規分布の確率分布を持つN群の独立した事象があるとします。各集団のn数は等しく十分に大きいものとします。 このときに各集団から1つづつ任意にサンプルをNコ取り出して、その最大値がどのような確率分布(平均と標準偏差)になるか、一般解を求めたいと考えています。 もっとも単純な例として、等しい分布の集団から2コ取り出す例で 平均:E(1)=E(2)=150 標準偏差;V(1)=V(2)=50とおいてn=5000で実数検証してみると、最大値の分布は E=178 V=40ぐらいになりました。 処理時間ばらつきを持つ工程をNコ連続配置したときにスループットがどのようになるかの推定が目的です。

  • 標準誤差と標準偏差の違いは何?

    誤っているのはどれか? 1. 算術平均値とは対象群のすべての変量の総和をその対象群の総数で徐したものをいう 2. 2集団の平均値が同じであっても2集団を構成する標本の分布が等しいとはいえない 3. 集団の標本が正規分布している場合、平均値±標準偏差の範囲には標本中の約68.27%が抱合される 4. 集団における平均誤差の絶対値は常に標準誤差の絶対値より大きい 5. 正規分布する標本数の等しい2集団において、標準偏差の絶対値が等しければ平均誤差の絶対値も等しい ――――-―――――――------------------------------------- このような問題を考えています。 自分なりに答えを出すと・・・・・・ 1. 算術平均値とは対象群のすべての変量の総和をその対象群の総数で徐したものをいう →(○)正しい。  定義どおりだと思います。 小学校で習った平均値ですね。 2. 2集団の平均値が同じであっても2集団を構成する標本の分布が等しいとはいえない →(○)正しい。 極端な例が混ざれば平均値は同じでも、バラツキがちがう 3. 集団の標本が正規分布している場合、平均値±標準偏差の範囲には標本中の約68.27%が抱合される   →(○)正しい。 そのとおり標準偏差(SD)のSD±1は68.27%である。 SD±2はたいか95%くらいでしたっけ。 SD±3は99.9%くらいだね。 つまりバラツキの度合いに占めるパーセンテージだと。 4. 集団における平均誤差の絶対値は常に標準誤差の絶対値より大きい →(○)正しい。 これがうさんくさい。 でも、私の持論によると・・・・・ ■SEχ(標準偏差の平均値)=σ/ √n     σは標準偏差です。 ■SDχ(標準誤差の平均値)=s/ √n      sは限られたサンプルより抽出した標準偏差の「予想値」です。                          そしてnはサンプルのサイズ(数)です。 つまり、標準偏差(SD)は国勢調査などで「全員」の数が把握できている場合であり、標準誤差(SE)は、大阪のミナミの繁華街の商店街の「全員」ということで つまり、 ■SEχ(標準偏差の平均値)=σ/ √n          →σ/ √日本の総人口 ■SDχ(標準誤差の平均値)=s/ √n          →s/ √大阪ミナミの商店街の人口 ・・・・ということで分母が小さくなりますから、 1/1000 と 1/10 では、1/10がおおきいですね。 つまり、調査の数が少ないと、誤差も大きくなるとそういうわけで、 誤差の絶対値は標準偏差よりも高くなるというわけです。 ですから一見この選択肢が誤りに見えますが、実は正しいのだと思います。 間違っていればどこがまちがっているか教えてください! 5. 正規分布する標本数の等しい2集団において、標準偏差の絶対値が等しければ平均誤差の絶対値も等しい →(○)正しい。 そのとおり。 本物と同じだから誤差も無い

  • 標準偏差の問題です

    ある地域で行った数学の試験において、1600人の成績をランダムにとって調べたところ、平均点58.3点、標準偏差12.5点を得た。 この試験の平均点は58点であるといえるか?有意水準5%で検定しなさい。 但し、この試験の成績は正規分布をしているものとする

  • Excelで標準偏差を求めたい

    Excelで標準偏差や標準正規分布表を用いて確率を求めたいのですが 操作方法を教えてください

  • 標準偏差と標準誤差

    標準偏差と標準誤差のちがいってなんですか? 両方とも正規分布(N、σ2/n)のσ2/nの正の平方根をとったものではないのですか?

  • 平均値の標準偏差

    とある画像処理に関する論文を読んでいて次のような記述があったのですが分からない点があったのでどなたか教えてください。(簡単にまとめてあります。) 「ノイズのある画像を複数回撮影し、その平均値をとることでノイズ成分を小さくすることができる。ノイズ成分が正規分布の場合、標準偏差σと測定回数n回の平均値の標準偏差σ1は以下で記述される。 σ1=σ/√n 」 この記述に関して、 1.ノイズ成分が正規分布の場合しか、上記式は適用できないのでしょうか。ランダムノイズの場合でも平均化できるような気がするのですが・・・。 2.またなぜ、測定回数の平方根に反比例するのでしょうか。 3.上記式では測定回数nを多くすれば平均値の標準偏差σ1は0に近づきますが、この数値はいくつくらいならいいのでしょうか。0に近いほど母集団の平均値を推定できているということまでは分かったのですが、どのくらいの数だったらいいという閾値や評価基準みたいなものはあるのでしょうか。 以上、どなたかご回答お願いします。