• ベストアンサー
  • すぐに回答を!

微分方程式で式の変形 空気抵抗を受ける物体の落下

質量mの物体が速度の2乗に比例する空気の抵抗を受けながら落下する問題を考えよう。 鉛直上向きにy軸をとり、時間をtとすると、速度はdy/dtで表される。重力加速度の大きさをg, 抵抗力を係数をkとすると、運動方程式は次のようになる。 m (d^2y)/(dt^2) = -mg + k(dy/dt)^2 この方程式にはyが含まれていない。 速度を v = dy/dt とおけば、(d^2y)/(dt^2) = dv/dt であるから、運動方程式(2.19)は次のようにvについての1階の微分方程式に帰着される。 dv/dt = -g + k/m v^2     (2.20) この微分方程式は、次のように変数分離形の1階常微分方程式であり 1/ (v^2 - mg/k) dv/dt = k/m 両辺をtで積分すると 1/{2√(mg/k)} ∫[1/{(v-√(mg/k)} - 1/{(v+√(mg/k)}] dv = k/m ∫dt log |{v-√(mg/k)}/{v+√(mg/k)}| = 2√(kg/m)t + C     (2.21) ここで、t=0 で v=0 として物体の落下だけを考えることにすると、y軸は鉛直上向きを正の方向としているので t>0 では v=dy/dt<0 dv/dt<0 となる。 したがって、式(2.20)から0<-v<√(mg/k)であることがわかり、式(2.21)からvは次のようになる。 v=dy/dt = -√(mg/k) * [1-e^{-2√(kg/m)t - C}] / [1+e^{-2√(kg/m)t - C}]     (2.22) ・・・と本に書いてあるんですが、どうやってこの(2.22)を導き出したのかが分かりません。 勘でやってみますと、 log |{v-√(mg/k)}/{v+√(mg/k)}| = 2√(kg/m)t + C     (2.21) の両辺でeをとって e^[log |{v-√(mg/k)}/{v+√(mg/k)}|] = e^{2√(kg/m)t + C} |{v-√(mg/k)}/{v+√(mg/k)}| = e^{2√(kg/m)t + C} |{v-√(mg/k)}| = e^{2√(kg/m)t + C} * |{v+√(mg/k)}| やっぱり分かりません。教えてください。お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数1378
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • suko22
  • ベストアンサー率69% (325/469)

>log |{v-√(mg/k)}/{v+√(mg/k)}| = 2√(kg/m)t + C     (2.21) >ここで、t=0 で v=0 として物体の落下だけを考えることにすると、y軸は鉛直上向きを正の方向としてい>るので t>0 では >v=dy/dt<0 >dv/dt<0 >となる。 >したがって、式(2.20)から0<-v<√(mg/k)であることがわかり、式(2.21)からvは次のようになる。 >v=dy/dt >= -√(mg/k) * [1-e^{-2√(kg/m)t - C}] / [1+e^{-2√(kg/m)t - C}]     (2.22) >・・・と本に書いてあるんですが、どうやってこの(2.22)を導き出したのかが分かりません。 0<-v<√(mg/k)より、(2.21)の左辺は絶対値が外れて、 (左辺)=log[-{v-√(mg/k)}/{v+√(mg/k)}](∵分子がマイナスになるから)      (2.21)に戻すと log[-{v-√(mg/k)}/{v+√(mg/k)}]= 2√(kg/m)t + C logy=a⇔y=e^aで変形。 -{v-√(mg/k)}/{v+√(mg/k)}=e^(2√(kg/m)t + C) -v+√(mg/k)={v+√(mg/k)}e^(2√(kg/m)t + C) (e^(2√(kg/m)t+1)v=√(mg/k){1-e^(2√(kg/m)t + C)} v=√(mg/k){1-e^(2√(kg/m)t + C)}/(e^(2√(kg/m)t+1) 分子分母にe^(-2√(kg/m)t - C)をかけると v=√(mg/k){e^(-2√(kg/m)t - C)-1}/{1+e^(-2√(kg/m)t - C)} =-√(mg/k){1-e^(-2√(kg/m)t - C)}/{1+e^(-2√(kg/m)t - C)} 見にくいかな?紙に書き出すなり、定数を文字に置き換えるなりして式変形を追っていってください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 > 0<-v<√(mg/k)より、(2.21)の左辺は絶対値が外れて、 > (左辺)=log[-{v-√(mg/k)}/{v+√(mg/k)}](∵分子がマイナスになるから) なるほど、元々、{v-√(mg/k)}/{v+√(mg/k)}の絶対値を求めようとしていたけど、vがどんだけ大きいか分からなかった。だから、√(mg/k)よりも大きくなった場合も考えていた。しかし、√(mg/k)よりは大きくならないと判ったんで、v-√(mg/k)の結果、分子はマイナスと確定されて、絶対値を外す代わりに負の符号を付けた、という感じですね(多分)。 ここまでで約30分かかりました。(^^ゞ 「(2.21)に戻すと」以降は、お陰様で順調に解けました。 「分子分母にe^(-2√(kg/m)t - C)をかけると」は自力では思い付かなかったと思います。 あれだけゴチャゴチャやっても最後にはきれいな形になるから数学(物理?)は不思議です。 ありがとうございました!

その他の回答 (1)

  • 回答No.1

この問題は式(2.21)が求められれば大半は終了です。 式(2.21)は求められたとして式(2.22)への変形を示します。 log |{v-√(mg/k)}/{v+√(mg/k)}| = 2√(kg/m)t + C     (2.21) p=√(mg/k)}と置く。なお式(2.21)の絶対値記号は不要である。 log{(v-p)/(v+p)} = 2(pk/m)t+ C  (v-p)/(v+p) =ce^(2(pk/m)t) vについて解いて v=p(1+ce^(2(pk/m)t))/(1-ce^(2(pk/m)t) t=0のときv=0よりc=-1 QED 今気が付いたが式(2.22)は初期条件が入っていません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 式(2.21)については既に自力で求められていました。 でも、「vについて解いて」の部分が自力では無理でした。 ありがとうございました。

関連するQ&A

  • 空気中の物体の落下

    空気の抵抗がある場合の、物体の落下速度を微分方程式で求めるさい、変数の変換がわからないので質問します。 運動速度がそれほど大きくないか、物体の大きさがそれほど大きくないときは、抵抗力はスピードに比例することが知られている。そこで質量mの物体を自由落下させ、時刻tにおける速度を下向きにvとしよう。この物体に働く力は、下向きの重力mgと、上向きの抵抗力kv(kは比例定数)である。よって、ニュートンの運動方程式 力=質量*加速度 により、mg-kv=m(dv/dt)・・・(1)という微分方程式がなりたつ。(1)を解いてみよう。変形して、 -k{v-(m/k)g}=m(dv/dt)そこでv-(m/k)g=u・・・(2)とおくと、ここがわからないところです。m(du/dt)=-kuになるのですが、なぜdv/dtがdu/dtになっているかが、あいまいです。自分では(2)の(m/k)gが定数で、両辺をtで微分すると左辺がdv/dt、 右辺が(d/dt)u=(d/du)u(du/dt)=1*(du/dt)なので、dv/dt=du/dtだと思いました。自分の考えが間違っていたら、訂正をおねがいします。

  • バネの微分方程式を解く問題。

    大学の物理の問題です。 途中まで解けたのですが、3番目の設問がわからず解けません。教えてください。 問題は次の通りです。 バネが垂直に垂れていて、その先端に質量mの物体がついています。バネの強さはk、重力定数をgとし、z軸を下向きにとり、物体の位置の座標をzとして次の問題に答えてください。 (1)物体mの運動方程式を書く。 (2)この運動方程式は z=y+aと置き換えることにより、yに対する簡単な方程式になることを示す。このときのaはいくらか。 解)z=a は重りのない場合の平衡点。   重りをつけた時、釣り合いの状態は平衡点からaだけ下がっているとする。   z=a の時、mg=ak   よって、a=mg/k   ここで、運動方程式は m(d^2z/dt^2)=-kz+mg=-kz+ak=-k(z-a)   z=y+a すなわち z-a=y と置き換えると m{d^2(y+a)/dt^2}=-kz (3)yの微分方程式を解き、yを求める。ただし、初期値として、t=0 で y=b, dy/dt=0 とする。 この解がわかりません。教えてください。お願いします。

  • 積分後m/k分合わない 空気抵抗を受ける物体の落下

    本には v=dy/dt = -√(mg/k) * [1-e^{-2√(kg/m)t - C}] / [1+e^{-2√(kg/m)t - C}]     (2.22) ここで、t=0 のときに v=0 であるから C=0 と定まる。 さらに、式(2.22)をtで積分するとyが次のように求まる。 y = -√(mg/k)t - m/k log( 1+e^2√(kg/m)t ) + C'     (2.23) ・・・と書いてあります。 これを自力でやってみました。 「t=0 のときに v=0 であるから C=0 と定まる」とあるので、式(2.22)はCを消して実質 v=dy/dt = -√(mg/k) * [1-e^{-2√(kg/m)t}] / [1+e^{-2√(kg/m)t}]     (2.22)' になります。これをtで積分すると、 ∫(dy/dt) dt = -√(mg/k) ∫[ [1-e^{-2√(kg/m)t}] / [1+e^{-2√(kg/m)t}] ] dt ∫dy = -√(mg/k) ∫[ [1+e^{-2√(kg/m)t} -2e^{-2√(kg/m)t}] / [1+e^{-2√(kg/m)t}] ] dt y = -√(mg/k) ∫[ 1 - [2e^{-2√(kg/m)t}] / [1+e^{-2√(kg/m)t}] ]dt y = -√(mg/k) [∫dt - 2∫[ [e^{-2√(kg/m)t}] / [1+e^{-2√(kg/m)t}] ]dt ] y = -√(mg/k)t + 2√(mg/k)∫[ [e^{-2√(kg/m)t}] / [1+e^{-2√(kg/m)t}] ]dt ここで分母を微分すると、[1+e^{-2√(kg/m)t}]' = -2√(kg/m)・e^{-2√(kg/m)t} ということで、後ろの項は、分子が-2√(kg/m)・e^{-2√(kg/m)t}であれば、積分すると晴れて log | [1+e^{-2√(kg/m)t}] |にできます。 ちょうど積分記号∫の前に+ 2√(mg/k)がありますので取り入れて y = -√(mg/k)t -∫[ [2√(mg/k)・e^{-2√(kg/m)t}] / [1+e^{-2√(kg/m)t}] ]dt y = -√(mg/k)t - log | 1+e^{-2√(kg/m)t} | + C' ・・・あれ? 式(2.23)の m/k はどこから降ってきたのでしょうか? どこか計算を抜かしていますでしょうか? どうか教えてください。お願いします。

  • 空気抵抗が速度の自乗に比例する場合の運動方程式

    自然落下する物体があり、その物体のt秒後の速度は速度が遅いうち(空気抵抗が速度に比例している時)は      m・dv/dt=mg-kv  mは物体の質量、gは重力加速度、kは空気抵抗定数。 という運動方程式を解いて   v=[mg-exp{-k(t+C)/m}]・1/k という一般解を得ます。(Cは積分定数) ここまではできるのですが、この先の空気抵抗が速度の二乗に比例するばあいの運動方程式    m・dv/dt=mg-kv^2 を解くことができないのです。解こうとしてもどうしても、途中で    -log|mg-kv^2/C|/2kv=t/m  という形になってしまい解くことができません。logの中にvが含まれていて、さらにlogの外にvのある形をv=の形に直せません。強引にv=の形に直せますが、両辺にvが現れてしまい解いたことになりません。 どうすればいいのでしょうか? 余談ではありますが、A=xlogx のx=への変形のしかたや、B=exp(x)+x のx=への変形のしかたを教えてくれると幸いです。

  • 空気抵抗のある自由落下

     空気中を鉛直線に沿って落下する物体が速度vの2乗に比例する空気抵抗力kv^2を受ける。物体の質量をm、重力加速度をgとして、物体が落下し始めてから時間t経過したときの速度v=f(t)を求めたいのですが、途中から式を上手く展開していけません。どなたかこの式の続きの展開でも構いませんし、速度v=f(t)を求める他の方法でも構いませんので、教えていただけないでしょうか。宜しくお願い致します。(vの2乗をv^2で表しております) (自分が考えた式)  この物体は重力mgを下方に、空気抵抗力がkv^2が上方に受けるので、運動方程式(質量)×(加速度)=(力)は m・dv/dt = -mg + kv^2  となる。ここから両辺をmで割ると dv/dt = -g + kv^2/m  となり、両辺を(-g+ kv^2/m)で割ると 1/(-g + kv^2/m)・dv/dt = 1  となる。ここで、両辺をtで積分すると ∫1/(-g + kv^2/m)dv = ∫dt + C (Cは任意定数)  となる。  ここから、左辺を上手く展開できません。どなたかこの式の続きの展開でも構いませんし、速度v=f(t)を求める他の方法でも構いませんので、教えていただけないでしょうか。宜しくお願い致します。

  • 微分方程式が解けません><

    この問題の解答が分からなくて困っています・・・。ご協力ください! y(t)についての微分方程式 m*dy^2(t)/dt^2=mg-k*dy(t)/dt 解答までの解説をできるだけ詳しくしていただけたら嬉しいです。よろしくお願いいたします。

  • 物理の微分方程式

    物理の微分方程式 高二です。塾で微分方程式を習ったのですが、さっぱりです。。。。 問 質点が速度Vに比例する抵抗力を受けて運動する際、V(t)、X(t)を求めよ。ただし、比例定数をk(>0)とする。 解 ma = mg-kv --1 a = dv/dt --2 v = dx/dt --3 1,2より dv/dt = g-kv/m よって dv/dt = -k/m(v-mg/k) ---4 ←変数分離型     (1/v-mg/k)dv = -k/m dt ----5 ここから積分して、計算して log{v(t)-mg/k} = C-kt/m ----6 (C=log{v(0)-mg/k}) {}は絶対値 そして {v(t)-mg/k} = e^C -e^-kt/m -----7 その後 v(t)=mg/k(1-e^-kt/m)(t≧0) となりました 質問 (1)初期条件ってなんですか?   (2)4→5の過程はなぜやるんですか?変数分離型ってなんですか?   (3)6→7の過程でなぜlogがとれるんですか?   (4)よければx(t)の答えを教えて下さい とても困っています!部分的でもよいので教えて下さい、お願いします

  • 微分方程式

    dx/dt=a^2-x^2 (aは実数の定数) (1)この微分方程式は1階の線形同次・線形非同次・非線形のどれにあてはまるか。 (2)この微分方程式の一般解を変数分離法で求めよ。 考えたことは(1)は非線形だと思いますが、合っていますか? (2)はdx/(x^2-a^2)=-dtと変形し、両辺積分します。  すると、1/(2a)log(|x-a|/|x+a|) = -t + C このあとx=が分からないです。 教えてください。お願いします

  • 微分方程式についてわからないことが・・・

    今 y'=-1/xy の微分方程式をときました。 ∫y dy=∫-x dx 1/2×y^2=-log|x|+C =-log{Cx{ e^(1/2×y^2)=-|Cx| =Cx これを微分方程式の解とします。 これを微分して与式になることを確認したいのですが 答えの両辺をxで微分して ye^(1/2×y^2)×y'=C 両辺にxかけて xyy'e(1/2×y^2)=Cx           =e^(1/2×y^2) よってy'=1/xy となり-がでてきません。 計算途中でC=±Cとしているので符号がおかしくなるのはわかりますが、確認の際は勝手にそれを考慮して-をつけてもいいのでしょうか? どのように解答をかいていけばいいのでしょうか? わかるかたお願いします。

  • 未定係数法は一階の線形微分方程式にも使えるのでしょうか? 

    未定係数法は一階の線形微分方程式にも使えるのでしょうか? 一階の線形微分方程式の解き方は dy/dt + p(t)y = g(t) のとき e^∫p(t)dt を両辺にかけて そのあとで両辺を積分してyについて解く と習いました。 そして、未定係数法は2階の線形微分方程式を解く方法の一つとして、 習いました。 ここで疑問に思ったのが、 この未定係数法は一階の線形微分方程式にも使えるのでしょうか? だとしたら下のような手順でよいのでしょうか? 同次式: dy/dt + p(t)y = 0 の一般解を求める (積分定数が残る) 非同次式: dy/dt + p(t)y = g(t) の特殊解を求める (積分定数はない) yの一般解 = 同次式の一般解 + 特殊解 よろしくお願いします。