• ベストアンサー
  • 困ってます

空気中の物体の落下

空気の抵抗がある場合の、物体の落下速度を微分方程式で求めるさい、変数の変換がわからないので質問します。 運動速度がそれほど大きくないか、物体の大きさがそれほど大きくないときは、抵抗力はスピードに比例することが知られている。そこで質量mの物体を自由落下させ、時刻tにおける速度を下向きにvとしよう。この物体に働く力は、下向きの重力mgと、上向きの抵抗力kv(kは比例定数)である。よって、ニュートンの運動方程式 力=質量*加速度 により、mg-kv=m(dv/dt)・・・(1)という微分方程式がなりたつ。(1)を解いてみよう。変形して、 -k{v-(m/k)g}=m(dv/dt)そこでv-(m/k)g=u・・・(2)とおくと、ここがわからないところです。m(du/dt)=-kuになるのですが、なぜdv/dtがdu/dtになっているかが、あいまいです。自分では(2)の(m/k)gが定数で、両辺をtで微分すると左辺がdv/dt、 右辺が(d/dt)u=(d/du)u(du/dt)=1*(du/dt)なので、dv/dt=du/dtだと思いました。自分の考えが間違っていたら、訂正をおねがいします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数152
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • f272
  • ベストアンサー率46% (5820/12623)

v-(m/k)g=uと置いた時点でuもtの関数です。中学生のころから何度も教わっているはずですよ。 実際,tが変化すればuも変化しますよね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

中学の範囲を復習しようとおもいます。お返事ありがとうございます。

その他の回答 (2)

  • 回答No.2

>(d/dt)u=(d/du)u(du/dt)=1*(du/dt)なので、dv/dt=du/dtだと思いました  間違っていません。そのとおりです。  あくまでも時間 t で積分するのですが,その際に一方の辺が v で積分する計算になり,変数を置き換える際にご質問の作業が出てきたのですね。 (ご存知の通り,置換積分では,置き換えた新しい変数で積分する際は,古い変数を新しい変数で微分したものをかけると新しい変数で積分できる……鉄則です)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

置換積分の手順の1つだとは、気付きませんでした。お返事ありがとうございます。

  • 回答No.1
  • f272
  • ベストアンサー率46% (5820/12623)

v-(m/k)g=u をtで微分したら (m/k)gが定数だから左辺はdv/dt 右辺はdu/dt でいいだろう。 右辺が(d/dt)u=(d/du)u(du/dt)=1*(du/dt)は何をやりたいのかよくわからない。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お返事ありがとうございます。

質問者からの補足

よかったらお返事ください。 v-(m/k)g=uと等しい両辺に、同じ操作(tで微分)しても等式は成り立つという考えを見つけました。それには納得できるのですが、du/dtと書けるためにはuがtの関数である必要があると思うのですが、v-(m/k)g=uと置いた時点でuもtの関数になったと考えればよいでしょうか?(速度vがtの関数というのは事実として) 間違っていたら訂正おねがいします。

関連するQ&A

  • 空気抵抗のある自由落下

     空気中を鉛直線に沿って落下する物体が速度vの2乗に比例する空気抵抗力kv^2を受ける。物体の質量をm、重力加速度をgとして、物体が落下し始めてから時間t経過したときの速度v=f(t)を求めたいのですが、途中から式を上手く展開していけません。どなたかこの式の続きの展開でも構いませんし、速度v=f(t)を求める他の方法でも構いませんので、教えていただけないでしょうか。宜しくお願い致します。(vの2乗をv^2で表しております) (自分が考えた式)  この物体は重力mgを下方に、空気抵抗力がkv^2が上方に受けるので、運動方程式(質量)×(加速度)=(力)は m・dv/dt = -mg + kv^2  となる。ここから両辺をmで割ると dv/dt = -g + kv^2/m  となり、両辺を(-g+ kv^2/m)で割ると 1/(-g + kv^2/m)・dv/dt = 1  となる。ここで、両辺をtで積分すると ∫1/(-g + kv^2/m)dv = ∫dt + C (Cは任意定数)  となる。  ここから、左辺を上手く展開できません。どなたかこの式の続きの展開でも構いませんし、速度v=f(t)を求める他の方法でも構いませんので、教えていただけないでしょうか。宜しくお願い致します。

  • tanhというモノ

    この間物体が空気中を落下し空気抵抗が速度の二乗に比例する場合の微分方程式  dv/dt=(mg-kv^2)/m  (mは物体の質量、kは空気抵抗係数) の特殊解はtanhというモノを使っていましたが、tanhというのはなんなのでしょうか?  

  • 微分方程式で式の変形 空気抵抗を受ける物体の落下

    質量mの物体が速度の2乗に比例する空気の抵抗を受けながら落下する問題を考えよう。 鉛直上向きにy軸をとり、時間をtとすると、速度はdy/dtで表される。重力加速度の大きさをg, 抵抗力を係数をkとすると、運動方程式は次のようになる。 m (d^2y)/(dt^2) = -mg + k(dy/dt)^2 この方程式にはyが含まれていない。 速度を v = dy/dt とおけば、(d^2y)/(dt^2) = dv/dt であるから、運動方程式(2.19)は次のようにvについての1階の微分方程式に帰着される。 dv/dt = -g + k/m v^2     (2.20) この微分方程式は、次のように変数分離形の1階常微分方程式であり 1/ (v^2 - mg/k) dv/dt = k/m 両辺をtで積分すると 1/{2√(mg/k)} ∫[1/{(v-√(mg/k)} - 1/{(v+√(mg/k)}] dv = k/m ∫dt log |{v-√(mg/k)}/{v+√(mg/k)}| = 2√(kg/m)t + C     (2.21) ここで、t=0 で v=0 として物体の落下だけを考えることにすると、y軸は鉛直上向きを正の方向としているので t>0 では v=dy/dt<0 dv/dt<0 となる。 したがって、式(2.20)から0<-v<√(mg/k)であることがわかり、式(2.21)からvは次のようになる。 v=dy/dt = -√(mg/k) * [1-e^{-2√(kg/m)t - C}] / [1+e^{-2√(kg/m)t - C}]     (2.22) ・・・と本に書いてあるんですが、どうやってこの(2.22)を導き出したのかが分かりません。 勘でやってみますと、 log |{v-√(mg/k)}/{v+√(mg/k)}| = 2√(kg/m)t + C     (2.21) の両辺でeをとって e^[log |{v-√(mg/k)}/{v+√(mg/k)}|] = e^{2√(kg/m)t + C} |{v-√(mg/k)}/{v+√(mg/k)}| = e^{2√(kg/m)t + C} |{v-√(mg/k)}| = e^{2√(kg/m)t + C} * |{v+√(mg/k)}| やっぱり分かりません。教えてください。お願いします。

  • 空気抵抗が速度の自乗に比例する場合の運動方程式

    自然落下する物体があり、その物体のt秒後の速度は速度が遅いうち(空気抵抗が速度に比例している時)は      m・dv/dt=mg-kv  mは物体の質量、gは重力加速度、kは空気抵抗定数。 という運動方程式を解いて   v=[mg-exp{-k(t+C)/m}]・1/k という一般解を得ます。(Cは積分定数) ここまではできるのですが、この先の空気抵抗が速度の二乗に比例するばあいの運動方程式    m・dv/dt=mg-kv^2 を解くことができないのです。解こうとしてもどうしても、途中で    -log|mg-kv^2/C|/2kv=t/m  という形になってしまい解くことができません。logの中にvが含まれていて、さらにlogの外にvのある形をv=の形に直せません。強引にv=の形に直せますが、両辺にvが現れてしまい解いたことになりません。 どうすればいいのでしょうか? 余談ではありますが、A=xlogx のx=への変形のしかたや、B=exp(x)+x のx=への変形のしかたを教えてくれると幸いです。

  • 空気抵抗がかかるときの落下運動

    空気抵抗がかかるときの落下運動、もしくは放物運動に 関しての質問です。 抵抗力が速度に比例する場合は、変数分離法を用いて微分 方程式を解くことができるのですが、 抵抗力が速度の2乗に比例する場合の微分方程式が解けませ ん。具体的には次の式です。 ma = -kv^2 + mg a:加速度 v:速度 この式の解法をよろしくお願いします。

  • 自由落下について

    地球上での自由落下についての質問です。 粘性抵抗力が関わるときの運動方程式の解き方が分かりません。 運動方程式は次の式です。 ma=mg-kv この後の微分方程式の解き方が分かりません。 ∫{1/(mg - kv^2)}dv = ∫(1/m)dt どなたか教えていただけませんか?

  • 空気抵抗がある場合の物体の落下時間

    ただいま課題を与えられていて、面積Sの円盤を飛行機から自由落下(Y方向の初速度=0)させたときの地面に到達するまでの時間を計算しています。 投下地点からxを下向きを正にとり、xメートル落下するまでにかかる時間を求めたいのです。t=f(x)という形で表したいということです。 空気抵抗は次式で求められます。       F=P*C'*S*V^2/2 F:空気抵抗、P:空気密度、C':空気抵抗係数 S:投影面積、V:速度 空気抵抗Fと速度はxの関数ですので、上式はxの関数であるものを示すと以下のようになります。(密度Pもxの関数でしょうが、どのような関数になるかわからないので定数とします) F(x)=P*C'*S*V(x)^2/2 定数と分母の2をまとめてCとおきます。 F(x)=C(dx/dt)^2 これを運動方程式に代入すると mg-C(dx/dt)^2=m(d2x/dt2) これを解けばt=f(x)が求められるのですが、この二次の運動方程式が解けなくて困っています。 どなたかご存知の方いらっしゃいますでしょうか? 終端速度は F(t)=mg ⇔ (dx/dt)^2=mg/C ⇔  dx/dt=(mg/C)^1/2 と求められます。 距離が長い(高度1万メートルからの落下を想定)のでこれで近似をしようかと思ったのですが、終端速度までにかかる時間が分からずに困っています。近似するにも根拠を示すことができません。 以上、よろしくお願いいたします。 このような問題に詳しい方がいらっしゃいましたら、空気の密度Pをxの関数として考えていただけるとさらに助かります。

  • 質点

    速さに比例した抵抗を受けながら重力のもとで落下する質点の運動方程式 m質量 g重力加速度 k比例定数 v速度 t時間として m(dv/dt)=-mg-kv と解答したのですが あっているでしょうか?

  • 雨粒の自由落下の振舞についてです。

    雨粒の自由落下の振舞についてです。 ご協力お願いいたします。 変数、定数を適切に定義し、雨粒の自由落下の振舞を微分方程式で近似せよ。また、 2km上空から半径 1mmの球形の雨粒が落下するとき、時刻 tと雨粒の高さ h(t)の関係を求めよ (時刻 tの関数 h(t)を求めよ )。ただし、摩擦 (空気抵抗、抗力 )によって発生する力は、物体の形状に無関係で、物体の速度に比例すると仮定してよい。比例定数は適当な値を選択せよ。 ヒント :微分方程式を解くときは高さ h(t)ではなく、 速度 v(t) := d h(t),速度の微分 dt d v(t)= d2 h(t)を用いて時刻 tと速度 v(t)の関係を先に求めよ。その結果を積分し、積分 dt dt2 定数に適切な値を代入して、関数 h(t)を求めよ。

  • 物理の微分方程式

    物理の微分方程式 高二です。塾で微分方程式を習ったのですが、さっぱりです。。。。 問 質点が速度Vに比例する抵抗力を受けて運動する際、V(t)、X(t)を求めよ。ただし、比例定数をk(>0)とする。 解 ma = mg-kv --1 a = dv/dt --2 v = dx/dt --3 1,2より dv/dt = g-kv/m よって dv/dt = -k/m(v-mg/k) ---4 ←変数分離型     (1/v-mg/k)dv = -k/m dt ----5 ここから積分して、計算して log{v(t)-mg/k} = C-kt/m ----6 (C=log{v(0)-mg/k}) {}は絶対値 そして {v(t)-mg/k} = e^C -e^-kt/m -----7 その後 v(t)=mg/k(1-e^-kt/m)(t≧0) となりました 質問 (1)初期条件ってなんですか?   (2)4→5の過程はなぜやるんですか?変数分離型ってなんですか?   (3)6→7の過程でなぜlogがとれるんですか?   (4)よければx(t)の答えを教えて下さい とても困っています!部分的でもよいので教えて下さい、お願いします