• ベストアンサー
  • すぐに回答を!

円周率の求め方について

円周率の求め方について アルキメデスの円周率の求め方についてレポートを書いているのですが、正6角形まではだせたのですが 正12角形の周の長さを求めるやり方が分かりません…。 ピタゴラスの定理とあわせて解くやり方を教えてくださいお願いいたします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数439
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • yyssaa
  • ベストアンサー率50% (747/1465)

正12角形の隣り合う3頂点をABC、外接円の中心をO、半径をr、 ACとBOの交点をPとすると、△AOCは正三角形なので AC=AO=r、CP=AO*cosπ/6=r(√3/2) 1辺の長さの二乗=AB^2=AP^2+BP^2 =(r/2)^2+{r-r(√3/2)}^2 =r^2{1/4+1-√3+3/4} =r^2(2-√3) AB=r√(2-√3) よって外接円の半径rのときの内接正12角形の周の長さ =12*r√(2-√3)・・・答え

共感・感謝の気持ちを伝えよう!

質問者からのお礼

分かりやすいご回答ありがとうございます、助かりました。

その他の回答 (1)

  • 回答No.2
  • yyssaa
  • ベストアンサー率50% (747/1465)

ANo.1の答えの訂正です。 二重根号をはずして 12*r√(2-√3)=12*r(√6-√2)/2・・・答え に訂正します。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • アルキメデスが円周率を計算したやり方は?

    Blue Backs「パソコンで挑む円周率」で教えられたのですが、世界で最初に円周率を計算により求めたのはアルキメデスとのことです。彼は円に内接・外接する正96角形の周の長さから円周率の近似値を計算し、3.14までは正確に求めたとのことです。 大変ためになる情報ですが、残念ながら私には正96角形の周の長さを求めるやり方が分かりません。アルキメデスは三角関数を知っていたのですか? 三角関数を知っているとしても、それを計算できたのでしょうか。 たぶん簡単なやり方があるのでしょうが、どなたか親切な方、教えてください。

  • 円周率の求め方

    円周率は3,141592…… などといいますが、 どのような式から出ている答えなんで すか? 知ってる方、教えてください ... 現在は、無限級数展開を利用する方法が一般的 ですが、アルキメデスは円に内接、外接する正多角形の周長で計算し、3桁 円周を測る 円を作って転がして求める方法。(やりやすい方法と実測値). 再帰的に円周 率を求める方法. 正n角形の面積 円に内接や外接する正n角形の面積から円周率を 求めます。 正2n角形の周りの長さ 円に内接2n角形の周りの長さの求め方. 確率で円周 率

  • 円周率

    円周率が3だったら、六角形になりますが(これを円周率と言って良いのか、疑問がありますが)、 円周率が3.14だったら、何角形になるんですか?

  • 円周率について

    初歩的な質問ではずかしいのですが、円周率の近似値についての質問です。アルキメデスの方法では円に内接・外接する正多角形で円周率の上限、下限を計算するため、何桁まで信頼できるのか、判定できますが、マチンの公式などの、級数によって近似値を求める場合、何桁まで信頼できるのかの判定はどのようにしているのでしょうか。ご存じの方がおりましたら、教えて下さい。

  • π(円周率)ってなんなんですか?

    円周を直径で割った数なのはわかりますが、これではその割った数がなんなのかなどが全く分からないです… また、この円にn角形(nは任意の自然数)を入れると円周率が求められるのはなぜでしょうか? n角形に円周なんて存在しませんのに

  • 円周率について

    学校で円周率の歴史について レポート5枚以上書くことになりました。 そこで聞きたいことがあります。 円周率は誰が一番最初に何の目的があって求めようとしたのか? つまり円周率の起源がわかりません。 適当に色んなページを読み漁ったのですが 僕は円周率の起源は解明されてないのではと考えています。 この考えは正しいでしょうか? 何か情報がありましたら教えて下さい。

  • 再び円周率について

    Snell-Huygensの方法についてですが、L(n)を円に内接する正n角形の周とし、M(n)を円に外接する正n角形の周とします。するとSnell-Huygensの関係、 M(2n)=2M(n)L(n)/(M(n)+L(n)) L(2n)=SQR(M(2n)L(n)) が成り立ちます。試した結果、これではアルキメデスの方法が改善されたことになりませんでした。Snell-Huygensの関係式の解釈を間違えたのでしょうか。

  • 円周率について

    円周率について 円周率は永遠につづくといいますね でも 直径×円周率=円周なら 円周÷直径=円周率ですよね じゃあ直径が1ならどうするんですか? 円周÷1=も永遠につづくんですか? 1に割れない数なんてあるんですか? 教えてください。

  • 円周率の理解は小学5年では厳しいと思いますか。

     私は厳しいと思います。といいますのは,円に内接する正六角形と外接する正六角形をかきます。  円の直径を1としたとき,内接する正六角形の周の長さ(=3)は容易に求まりますが,外接する正六角形の周の長さ(=2√3≒3.46)は三平方の定理なしでは求まりません。  よって円周率の理解は中学3年でないと厳しいと考えます。

  • 表計算(エクセル)で、円周率の近似値を求めようとすると・・・

    コンピュータのカテゴリに書き込もうかとも迷いました。 場違いでしたらすみません。 表計算ソフト(エクセル)で、遊びで円周率の近似をやってみることにしました。半径=0.5の円に内接する正多角形の周の長さを求めるやり方です。半径=0.5にしたのは、直径1の円の円周率は、周の長さをそのまま円周率とすることができるからという理由からです。 半径0.5の円に内接する正多角形の隣り合う2点ABと円の中心Oとを結んで出来る二等辺三角形OABの辺ABの長さは、 =√(0.5^2+0.5^2-2*0.5*0.5*cos∠AOB)(余弦定理) =√(0.5^2*2*(1-cos∠AOB)) エクセルでの具体的な計算の仕方 (1) A1セルに「=3」 B1セルに「=SQRT(0.5^2*2*(1-COS(RADIANS(360/A1))))*A1」 ※これでA2セルには、半径0.5の円に内接する正三角形の周の長さが表示されます。 (2) A2セルに「=A1+1」 B2セルに「=SQRT(0.5^2*2*(1-COS(RADIANS(360/A2))))*A2」 (3) A2、B2を選択して、下方向へオートフィルします。 オートフィルを続ければ続けるほど、正n角形のnが増大するので、3.14にB列に表示される数値は、”下の行に行くほどどんどん円周率πに近づく”はずです。 なのに、正4316角形と正4317角形(セルB4315とセルB4315)では、 正4316角形の周の長さ=3.14159237622779 正4317角形の周の長さ=3.14159237622464 となっており、正4316角形の周の長さよりも正4315角形の周の長さのほうが長いことになっています。 正∞角形の周の長さ÷直径=円周率というのは、数学の教科書にも載っているようなことなので、”下の行に行くほどどんどん円周率πに近づく”という考え方自体は間違っていないと思うのですが・・・ コンピュータの限界とか、そういう問題でしょうか?