• 締切済み
  • すぐに回答を!

円周率について

初歩的な質問ではずかしいのですが、円周率の近似値についての質問です。アルキメデスの方法では円に内接・外接する正多角形で円周率の上限、下限を計算するため、何桁まで信頼できるのか、判定できますが、マチンの公式などの、級数によって近似値を求める場合、何桁まで信頼できるのかの判定はどのようにしているのでしょうか。ご存じの方がおりましたら、教えて下さい。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数252
  • ありがとう数2

みんなの回答

  • 回答No.1

テイラー展開の打ち切り誤差を評価すれば良いのではないでしょうか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

そう言われれば、そうですね。ありがとうございました。

関連するQ&A

  • 円周率の求め方

    円周率は3,141592…… などといいますが、 どのような式から出ている答えなんで すか? 知ってる方、教えてください ... 現在は、無限級数展開を利用する方法が一般的 ですが、アルキメデスは円に内接、外接する正多角形の周長で計算し、3桁 円周を測る 円を作って転がして求める方法。(やりやすい方法と実測値). 再帰的に円周 率を求める方法. 正n角形の面積 円に内接や外接する正n角形の面積から円周率を 求めます。 正2n角形の周りの長さ 円に内接2n角形の周りの長さの求め方. 確率で円周 率

  • 円周率の証明

    円周率が3.14159・・・となることの証明を お願いします。 できれば円に内接する正多角形の 辺数を増やして円周率の近似値を求める 以外の方法を教えてください

  • アルキメデスが円周率を計算したやり方は?

    Blue Backs「パソコンで挑む円周率」で教えられたのですが、世界で最初に円周率を計算により求めたのはアルキメデスとのことです。彼は円に内接・外接する正96角形の周の長さから円周率の近似値を計算し、3.14までは正確に求めたとのことです。 大変ためになる情報ですが、残念ながら私には正96角形の周の長さを求めるやり方が分かりません。アルキメデスは三角関数を知っていたのですか? 三角関数を知っているとしても、それを計算できたのでしょうか。 たぶん簡単なやり方があるのでしょうが、どなたか親切な方、教えてください。

  • 円周率について(再)

    前回、質問させて頂いた者です。 http://oshiete1.goo.ne.jp/qa2881020.html 例えば、マチンの公式などの級数で円周率の近似値を求めた場合、何桁までが信頼できるのかの判断ですが、「打ち切り誤差」を評価すれば良いことが分かり、一度は質問を締め切ったものの、その「打ち切り誤差」の評価が難しくて再度質問をさせて頂きました。実際の計算場面では、本当に「打ち切り誤差」を評価しているのでしょうか?たとえば、「マチンの公式のn項までをとれば、m桁までの近似値が得られる」というように誤差が評価できるものなのでしょうか。

  • 円周率の算出方法

    円周率は小数点以下、膨大な桁まで算出されていますが、どうやって算出するのでしょうか?宜しくお願いいたします。 私の想像では円の内接および外接多角形を利用するのかなと思うのですが………。 宜しくお願いいたします。

  • 円周率の大桁数の計算

    円周率 3.1415~延々と続きますが、この莫大な桁の数字はどうやって計算するのでしょうか? ・計算機ならではの特別なアルゴリズムがあるのか? ・手計算で無理やり算出する方法はあるのか? 正多角形を内接、外接させる方法は桁数が小さい場合に有効ですが、何十桁も求めるには不向きと思います。世に出ている数値はどうやって計算したのでしょうか?素人考えですが、今日は40~50桁数、明日は51~60桁などという方法があるのでしょうか?

  • 再び円周率について

    Snell-Huygensの方法についてですが、L(n)を円に内接する正n角形の周とし、M(n)を円に外接する正n角形の周とします。するとSnell-Huygensの関係、 M(2n)=2M(n)L(n)/(M(n)+L(n)) L(2n)=SQR(M(2n)L(n)) が成り立ちます。試した結果、これではアルキメデスの方法が改善されたことになりませんでした。Snell-Huygensの関係式の解釈を間違えたのでしょうか。

  • 表計算(エクセル)で、円周率の近似値を求めようとすると・・・

    コンピュータのカテゴリに書き込もうかとも迷いました。 場違いでしたらすみません。 表計算ソフト(エクセル)で、遊びで円周率の近似をやってみることにしました。半径=0.5の円に内接する正多角形の周の長さを求めるやり方です。半径=0.5にしたのは、直径1の円の円周率は、周の長さをそのまま円周率とすることができるからという理由からです。 半径0.5の円に内接する正多角形の隣り合う2点ABと円の中心Oとを結んで出来る二等辺三角形OABの辺ABの長さは、 =√(0.5^2+0.5^2-2*0.5*0.5*cos∠AOB)(余弦定理) =√(0.5^2*2*(1-cos∠AOB)) エクセルでの具体的な計算の仕方 (1) A1セルに「=3」 B1セルに「=SQRT(0.5^2*2*(1-COS(RADIANS(360/A1))))*A1」 ※これでA2セルには、半径0.5の円に内接する正三角形の周の長さが表示されます。 (2) A2セルに「=A1+1」 B2セルに「=SQRT(0.5^2*2*(1-COS(RADIANS(360/A2))))*A2」 (3) A2、B2を選択して、下方向へオートフィルします。 オートフィルを続ければ続けるほど、正n角形のnが増大するので、3.14にB列に表示される数値は、”下の行に行くほどどんどん円周率πに近づく”はずです。 なのに、正4316角形と正4317角形(セルB4315とセルB4315)では、 正4316角形の周の長さ=3.14159237622779 正4317角形の周の長さ=3.14159237622464 となっており、正4316角形の周の長さよりも正4315角形の周の長さのほうが長いことになっています。 正∞角形の周の長さ÷直径=円周率というのは、数学の教科書にも載っているようなことなので、”下の行に行くほどどんどん円周率πに近づく”という考え方自体は間違っていないと思うのですが・・・ コンピュータの限界とか、そういう問題でしょうか?

  • 円周率の理解は小学5年では厳しいと思いますか。

     私は厳しいと思います。といいますのは,円に内接する正六角形と外接する正六角形をかきます。  円の直径を1としたとき,内接する正六角形の周の長さ(=3)は容易に求まりますが,外接する正六角形の周の長さ(=2√3≒3.46)は三平方の定理なしでは求まりません。  よって円周率の理解は中学3年でないと厳しいと考えます。

  • マチンの公式による円周率のプログラム

    この前、学校の授業でマチンの公式による円周率の計算をするプログラムを以下の方針で考えました。ここで、atanを求めるユーザー定義関数を作りたいのですが、途中までは考えたのですが以下の空欄の部分が、よく分かりません。 【方針】1.数列a(k)=±(1/2k-1)*x^(2k-1)(k=1,2,…)の漸化式を作る。(a(k)のkは添え字です) 2.a(1)+a(2)+a(3)+…+a(N)の値をatan(x)の近似値とする。 (1,2,3,…,Nは添え字です) (プログラムの一部)→atanの近似値を求める関数 double Atan(double x) { double s=_,a=_,kk; int k; //添え字用 for(k=1;k<=x;k++) {s_; //多分式が入る。 kk=(double)k; a_; //多分式が入る。 } return s; } 下線部に適当な文字や式を入れて、この関数を完成させてください。(ヒントをください) ※できれば、このプログラムの形は変えないで、下線部のみを埋めてください。