• 締切済み
  • すぐに回答を!

仕事とエネルギー

大問:曲面ABが点B,曲面CDが点Cにおいて,水平面BCとなめらかに接続されている。水平面から高さh[m]の曲面上の点Eから,質量m[kg]の小物体を静かにはなし運動させた。面と物体との摩擦は無視でき,物体は回転することなく面上を運動する。重力加速度の大きさをg[m/s^2],重力による位置エネルギーの基準点を水平面BCとして,以下の問いに答えよ。 小門:物体は曲面CD上をどの高さまで上がることができるか。水平面BCからの高さで答えよ。 という問題で、答えが mgh=mgh' h'=h になるのですが、このmgh=mgh'になる前の式って、どんなですか? BCは、平面なので高さが無いじゃないですか~? なのに何故mghとなるのですか?もしかしてA点を始めD点を後と見ているのですか? どんな公式を使いどこの点=どこの点の式なのか?何が0なのかまで詳しく教えて下さい。 最後に画像の図が見えにくくて申し訳有りません。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数354
  • ありがとう数0

みんなの回答

  • 回答No.1
noname#175206
noname#175206

>このmgh=mgh'になる前の式って、どんなですか?  途中経過で速度vも含めると、力学的エネルギーとしては「運動エネルギーと位置エネルギーの和」つまり「(1/2)mv^2+mgh」が一定だということです。  これが成り立っているのは、摩擦による力学的エネルギーの減衰がないという前提があってのことです。また、回転しないということから「(1/2)mv^2+mgh」としています。つまり、回転よる力学的エネルギーを0としています(もし転がるなら、その運動エネルギーも考慮する必要がある)。  すると、ある地点で速度v、高さhだったのが、移動して、速度v'、高さh'になると、力学的エネルギー保存としては、 (1/2)mv^2+mgh=(1/2)mv'^2+mgh' ―(1) となります。高さの基準は問題に「重力による位置エネルギーの基準点を水平面BCとして」とある通り、「水平面BCからの高さ」です。  高さhで滑らせ始めた初速は0です。そして速度が増して、また減速して、最高の高さh'に達したときの速度も0です。もし、まだ速度が0でなければ、さらに斜面を登れますから。  つまり、式(1)でvとv'を0とするわけです。こうして、 mgh=mgh' ―(2) となり、h=h'を得ます。  ちなみ、区間BCでは、そこが高さの基準ですので、h=0です。このとき、v=0のとき持っていた位置エネルギーが全て運動エネルギーに変わります。これは、 (1/2)mv^2=mgh と表せて、その速度はv=√(2gh)となります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • エネルギーと仕事の関係について

    エネルギーについて、した仕事分だけエネルギーをもつと教わりました。 たとえば、質量mの物体をある点から高さhまで持ち上げるとき、重力に逆らってhだけ仕事をするから位置エネルギーmghをもつ、ということです。 しかし、このとき重力が物体にする仕事-mghはどうなっているのでしょうか?何かのエネルギーになっているのでしょうか? わかりにくいかもしれませんが、よろしくお願いします。

  • 位置エネルギー

    ある質量の物体が基準水平面から高さHにあるとき、その物体がもつ重力による位置エネルギー なお重力加速度は9.8とする

  • 仕事とエネルギーの計算方法?

    地上 80[m]の高さから、質量 0.5[kg]の物体を自由落下させた。重力加速度を g=10[m/s^2]とする。 地面に到達する直前の早さはいくらか。 という問題があります。 授業でやった公式と答えは 全体エネルギー E=mgH=0.5*10*80=400[J] 400(1/2)mv^2 ∴v=40[m/s] とあります。 ですが、公式に当てはめて計算すると 400*(1/2)*0.5*v^2=100v^2 ここから先のやり方が分かりません。 40[m/s]という答えはどのように出すのでしょうか。

  • 位置のエネルギーについて

    位置のエネルギーについてどう考えますか? 重力による位置エネルギーを考えます。 質量 m の物体を基準面よりhだけ高いところへおくと、 位置のエネルギー mgh が考えられますね。 このとき、基準面から物体を移動することを考えると、 物体に働く力は重力 mg と上に移動させるための F(=mg)の力が鉛直上方に必要となります。 仕事を考えます。 Fのする仕事は mgh です。 説明ではこれが位置のエネルギーとなる とあるのをよく見ますが、 しかし、同時に重力による仕事は -mgh で相殺されて0になります。 したがって、物体にされた仕事の総和は0です。位置のエネルギー mgh はどこから供給されたといえるでしょうか。 ちなみに、水平方向に運動する物体の運動エネルギーでは、した仕事が 運動エネルギーの変化分になります。物体にされる仕事の総和は 0ではありません。 また、位置エネルギーが蓄えられているのはどこに? 物体ですか?それとも重力場ですか?どう考えられますか? 運動エネルギーでは物体に蓄えられていると言っていいと思いますが・・・。

  • 動摩擦力が働くときの力学的エネルギー。

    高さhの斜面AB,水平面BC,傾斜角30°の斜面CDがなめらかにつながっている。 またどの面もなめらかである。 いま、高さhの点Aに質量mの小物体をおいて手を離した。重力加速度の大きさをgとする。 (1)点Bでの物体の速さはいくらか。 (2)小物体がCD上を昇るとき、CD上の移動距離Lを求めよ。 次に斜面CDをあらい面に変え、同じ操作をした。動摩擦係数μのとき、 (3)小物体がCDを昇るとき、CD上の移動距離L'を求めよ。 (4)摩擦によって失われたエネルギーの値を求めよ。 質問は(3)です。 まず(1)(2)と違ってあらい面なので、動摩擦力つまり非保存力が働くので力学的エネルギー保存則は使えないから、運動方程式で解こうと思いました。 斜面方向下向きを正にして、 ma= - mgsinθ- μmgcosθ よって、a = -(sinθ-μcosθ)g となる。 CD面を上る直前の速度をv₀とすると、v₀=√2gh 、 CD面を上り終えたときの速度は0 これらを下の式 v^2 - v₀^2 = 2ax に当てはめて解いたのですが、答えがまったく違いました。いったい何を間違えたのでしょうか。 わかりません。 何故間違いか、そして正しくて理解しやすい解き方を教えてください。 (4)は力×距離でわかります。 答え (1)√2gh (2)2h (3)2h/(1+√3μ) (4){√3μ/(1+√3μ)}mgh

  • センター物理 仕事 再

    図のように傾角60°の斜面と傾角3斜面をそれぞれの下端B,Cが同じ高さになるように、なめらかな曲面でつなぐ。 傾角30°の斜面上の端Cからの高さがHの点D'に質量mの小物体を置いて静かに離すと傾角60°の斜面上の端Bからの高さがh'の点A'まで上昇した ただし重力加速度をg、小物体と2つの斜面の間の動摩擦係数を共に√3/6とする。 問 h'はいくらか 解説 D'→C→B→A'の移動の各区間での重力と動摩擦力が小物体にする仕事の和をW[D'→C],W[C→B],W[B→A']としてW[D'→C]=mgH/2,W[C→B]=0,W[B→A']=-7mgh'/6となる。 端D'と端A'で小物体の運動エネルギーは0であるから、仕事と運動エネルギーの変化の関係によりW[D'→C]+W[C→B]+W[B→A']=mgH/2-7mgh'/6=0 よってh'=3H/7となっていたのですが 仕事と運動エネルギーの変化の関係により W[D'→C]+W[C→B]+W[B→A']=mgH/2-7mgh'/6=0の部分なんですが、この式はD'からA'までした仕事の合計が0である事を意味しているのですが、D'とA'の運動エネルギーが0だったら仕事の合計が0になるんですか? D'での力学的エネルギーをE[1],A'での力学的エネルギーをE[2]として、D'からA'の間で動摩擦力のした仕事の大きさをWとすると E[1]-W=E[2]となって変形するとE[1]-E[2]-W=0ですよね、E[1]-E[2]はD'とA'は共に運動エネルギーは0なので位置エネルギーの変化量ですよね、定義から位置エネルギーの変化量=-(重力のした仕事)ですよね。-Wは動摩擦力のした仕事ですよね ですからE[1]-E[2]-W=0は-(D'からA'まで重力のした仕事)+(D'からA'まで動摩擦力のした仕事)ですよね。ですから和では無くて差が0となってしまうのですが、どこが駄目なのでしょうか?

  • 物理学

    力学的エネルギーの損失 図で、AB間はなめらかな曲面、 BC間は粗い水平面である。 点Aから静かに滑り落ちた1.0kg の物体が、点Bからの粗い水平面を滑り、点Cで静止した。 物体と水平面との間の動摩擦係数を0.20 重力加速度の大きさを9.8m/S二乗として、BC間の距離を求めよ。 この問題解ける方 公式、答え、途中式 もできる方回答お願いいたしますm(_ _)m

  • 力学的エネルギーについての質問

    質量mの物体が、地面からの高さがhの点Oを静かに出発してなめらかな曲面をすべり、点Pから飛び出した。重力加速度の大きさをgとして次の問いに答えなさい。 (1)点Pを飛び出した物体が達する最 高点の高さとして正しいのは図ア~ウのどれか。 答えは【ウ】なのですが、なぜ【ウ】なのか解説お願いします

  • センター物理 仕事

    図のように傾角60°の斜面と傾角3斜面をそれぞれの下端B,Cが同じ高さになるように、なめらかな曲面でつなぐ。 傾角30°の斜面上の端Cからの高さがHの点D'に質量mの小物体を置いて静かに離すと傾角60°の斜面上の端Bからの高さがh'の点A'まで上昇した ただし重力加速度をg、小物体と2つの斜面の間の動摩擦係数を共に√3/6とする。 問 h'はいくらか 解説 D'→C→B→A'の移動の各区間での重力と動摩擦力が小物体にする仕事の和をW[D'→C],W[C→B],W[B→A']としてW[D'→C]=mgH/2,W[C→B]=0,W[B→A']=-7mgh'/6となる。 端D'と端A'で小物体の運動エネルギーは0であるから、仕事と運動エネルギーの変化の関係によりW[D'→C]+W[C→B]+W[B→A']=mgH/2-7mgh'/6=0 よってh'=3H/7となっていたのですが 仕事と運動エネルギーの変化の関係により W[D'→C]+W[C→B]+W[B→A']=mgH/2-7mgh'/6=0の部分なんですが、この式はD'からA'までした仕事の合計が0である事を意味しているのですが、D'とA'の運動エネルギーが0だったら仕事の合計が0になるんですか?

  • 重力のした仕事と位置エネルギーの関係

    次のケース1について、お伺いします。 基本的な内容なのですが、困惑しております。どうかヒントを下さい。 (ケース1) 地表(高さ0m)にある物体(質量 m)を高さhまでもっていきます。 すると、物体はmghの位置エネルギーをもちます。 ところでこの位置エネルギーは、重力(-mg)のする仕事と関係があるかと思います。 しかし重力のする仕事は、-mghと負の値です。 重力のするこの負の仕事と位置エネルギーをどう結びつけて考えるのかが分かっておりません。 また、物体を高さhに持っていくには、重力に逆らう上向きの力が必要で、重力と大きさが同じで 向きが異なる力F (= mg)という力でhまでもって行ったとします。 Fのした仕事は、mghで正ですが、すると物体は正味でゼロの仕事(Fのした仕事+重力のした仕事 = 0) を受けたことになり、地表にあったときとエネルギー状態が変わらないことになってしまいます。 しかし実際は、位置エネルギーmghをもっているはずです。 たとえば、 (ケース2)として、最初物体が高さhにあったとし、地表に落ちていき、地表に着く直前の速さを求める、という 場合は、 1/2mv^2 = mgh と求められますが、右辺は位置エネルギーとも見えますが、重力のした仕事で、 重力のした仕事が運動エネルギーに変わったとなり、とても分かり易く納得がいきます。 ケース1をよく説明する方法を教えて頂きたく、どうか宜しくお願い致します。