• ベストアンサー

急ぎです゜(゜´Д`゜)゜

cococu713の回答

  • ベストアンサー
  • cococu713
  • ベストアンサー率100% (1/1)
回答No.2

解いてみました。ご参考になればと思います。 【証明】 (1)n=1のとき 左辺=(1+1)=2 右辺=2^1×1=2 両辺は一致する。 (2)n=k ( k=2, 3, 4・・・)のとき与式が成り立つと仮定すると n=k+1のとき 左辺=(k+2)(k+3)・・・(2k) × (2k+1)(2k+2)   =2(2k+1) × [(k+1)(k+2)(k+3)・・・(2k)]  (←(2k+2)=2(k+1)) 右辺=2^(k+1)×1×2×・・・×{2(k+1)-1}   =2×2^k×1×2×・・・×(2k+1)   =2×2^k×1×2×・・・×(2k-1)×(2k+1)   =2(2k+1) × [2^k×1×2×・・・×(2k-1)] n=kのとき与式が成り立つなら、n=k+1のときも成り立つ。 よって、全ての自然数について命題は成り立つ。 【証明終わり】

iguchon
質問者

お礼

解いていただきありがとうございますm(__)m お礼がおそくなり申し訳ありません… とてもわかりやすかったのでベストアンサーに選ばせていただきました( ´∀`) ありがとうございます(*^▽^*) また困ったときに助けていただくとありがたいです(´・ω・)

関連するQ&A

  • 数Bの整数の性質の証明について質問です

    すべての自然数nについて、nの3乗+(n+1)の3乗+(n+2)の3乗は9の倍数である。このことを、数学的帰納法を使わずに証明せよ。 という問題に全くわかりません。回答よろしくお願いします。

  • 数学的帰納法

    次の等式を数学的帰納法で証明しなさい。 3+3・4+3・4の2乗+・・・・+3・4のn-1乗=4のn乗-1 という問題が分かりません。 分かりやすく教えてください。

  • 数Bの問題について教えてください。

    すべての自然数nについて、nの3乗+(n+1)の3乗+(n+2)の3乗は9の倍数である。このことを数学的帰納法を使わずに証明せよ。 という問題です。自分では何回かやっているのですが答えが全くあいません。 どうぞよろしくお願いします。

  • 数学の問題についてです。

    数Bの問題について教えてください。 すべての自然数nについて、nの3乗+(n+1)の3乗+(n+2)の3乗は9の倍数である。このことを数学的帰納法を使わずに証明せよ。 という問題です。自分では何回かやっているのですが答えが全くあいません。 どうぞよろしくます。

  • 数学的帰納法の証明2

    [問題] nは4以上の自然数とする。数学的帰納法によって、次の不等式を証明せよ。               2ⁿ>n²-n+2 この問題の証明の仕方がわかりません。 解法を回答してくださる方 お待ちしております。 ⁿはn乗 &#sup;は2乗のこと

  • 数学的帰納法

    数学的帰納法がわからなくなってしまいました。 だれか、教えてください。 問題 次の等式が成り立つことを、数学的帰納法によって証明せよ。 nが自然数のとき、1・1 + 2・2 + 3・(2の2乗) +・・・・+ n・(2のn-1乗) = (n-1)・(2のn乗+1)----(1) (ⅰ)n=1のとき    (左)-(右)=1-1=0 よってn=1のとき(1)は成り立つ。 (ⅱ)n=kのとき(1)が成り立つと仮定すると、     1・1 + 2・2 + 3・(2の2乗) +・・・・+ k・(2のk-1乗) = (k-1)・(2のk乗+1)    n=k+1のとき、     (左)=1・1 + 2・2 + 3・(2の2乗) +・・・・+ k・(2のk乗)  ここからがわかりません。1・1 + 2・2 + 3・(2の2乗) を、どうやって処理したら良いんでしょう? やりかたはもうひとつあると思いますが、このやり方でお願いします。

  • 数学的帰納法を用いる証明です。

    ()ばっかで読みにくいかもです。 nを自然数とするとき 1+3+3(2乗)+…+3(n-1乗)=1/2(3(n乗)-1) が成り立つことを数学的帰納法を用いて証明しなさい。 どなたかお願いします!!

  • 証明問題の解答を、お願いします!

    問題は「nは自然数とする。このとき5^n(5のn乗)-1は4の倍数であることを数学的帰納法を用いて証明せよ。」です。 n=1のとき5^1-1=4までは証明できるのですが、この後の証明方法が思い浮かびません。どなたか教えて下さい!宜しくお願いします。

  • 数学的帰納法 不等式の証明

    数学的帰納法の不等式の証明について質問させていただきます。 nは3以上の自然数とする。不等式 2のn乗>2n+1 ・・・(1)を数学的帰納法により証明せよ  この問題で、n=3のときを証明し、次にk≧3としてn=kのとき(1)が成り立ち、 2のk乗>2k+1 ・・・(2)と仮定する。  つぎに、n=k+1のとき(1)の両辺の差を考えると、 (2)より 2のk+1乗-{2(k+1)+1}=2・2のk乗-(2k+3)>2(2k+1)-(2k+3)となります。この>の右側の2(2k+1)-(2k+3)の部分がなぜこうなるのか分かりません。  できるだけ詳しく解説をお願いしたいです。よろしくお願いします。

  • 数学的帰納法の問題

    数学がとてつもなく苦手なので、 どうしても答えが出せないものがあります。 4択なのに、自分ではどれにもなりません。 数学が得意な方、力をお貸しくだされば嬉しいです。 1の二乗、2の二乗、3の二乗…の和Snは、     n(n+1)(2n+1) Sn= ̄ ̄ ̄ ̄ ̄ ̄ ̄       6 であることが、数学的帰納法により証明されています。 n=11からn=20までの和を求めなさい。 です。よろしくお願いします!!