• ベストアンサー
  • すぐに回答を!

数学的帰納法

数学的帰納法がわからなくなってしまいました。 だれか、教えてください。 問題 次の等式が成り立つことを、数学的帰納法によって証明せよ。 nが自然数のとき、1・1 + 2・2 + 3・(2の2乗) +・・・・+ n・(2のn-1乗) = (n-1)・(2のn乗+1)----(1) (ⅰ)n=1のとき    (左)-(右)=1-1=0 よってn=1のとき(1)は成り立つ。 (ⅱ)n=kのとき(1)が成り立つと仮定すると、     1・1 + 2・2 + 3・(2の2乗) +・・・・+ k・(2のk-1乗) = (k-1)・(2のk乗+1)    n=k+1のとき、     (左)=1・1 + 2・2 + 3・(2の2乗) +・・・・+ k・(2のk乗)  ここからがわかりません。1・1 + 2・2 + 3・(2の2乗) を、どうやって処理したら良いんでしょう? やりかたはもうひとつあると思いますが、このやり方でお願いします。

noname#755
noname#755

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数245
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • brogie
  • ベストアンサー率33% (131/392)

おはよう御座います(^○^) 今、目がさめました。 brogieです。 回答です。 n = k のとき 成立すると仮定、 a) 1・1+2・2+・・・・k・2^(k-1) = Rk とおきます。 b) (k-1)・2^k+1 = Lk とおきます。 仮定から Rk = Lk  です。 n = k + 1 のとき 左辺=1・1+2・2+・・・+k・2^(k-1)+(k+1)・2^k    =(1・1+2・2+・・・+k・2^(k-1)) + (k+1)・2^k    =Rk + (k+1)・2^k    =Lk + (k+1)・2^k    = ((k-1)・2^k+1) + (k+1)・2^k ← a)式より    =k・2^k-2^k+1+k・2^k+2^k    =k・2^k+1+k・2^k    =2・k・2^k+1    =k・2^k・2^1+1 ← a^m・a^n = a^(m+n)から次の式へ    =k・2^(k+1)+1 右辺=k・2^(k+1)+1 故に、n = k + 1 のとき(1)式は成立する。 これで証明終わり。 間違いないと思いますが、確認してください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

おはようございます。 すぐに回答して欲しいといいながら、きのう、すぐに寝てしまいました。 悪い子でした。 ごめんなさいー。 こたえ、初めて見たやり方だったのですが、よくわかりました。 もうすぐ期末テストなんで、あせってたんですが、よかったです。 どうも、ありがとうございました。

その他の回答 (2)

  • 回答No.2
  • hiropi-
  • ベストアンサー率36% (17/46)

 あのう、  1・1 + 2・2 + 3・(2の2乗) +・・・・+ n・(2のn-1乗) = (n-1)・(2のn乗+1)  ではなく、  1・1 + 2・2 + 3・(2の2乗) +・・・・+ n・(2のn-1乗) = (n-1)・(2のn乗)+1  じゃないんですか?そうでないとこの問題解けないような・・・・

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ちなみに、 1・1 + 2・2 + 3・2^2 +・・・・+ k・2^(k-1) = (k-1)・2^k+1 でした。 ごめんなさい。 解けませんよねえ。あんなんじゃ。 どうもありがとうございました。

質問者からの補足

はい。そのとおりです。 ごめんなさいーっつ。 おばかさんでした・・・。

  • 回答No.1
  • brogie
  • ベストアンサー率33% (131/392)

1・1 + 2・2 + 3・(2の2乗) +・・・・+ n・(2のn-1乗) = (n-1)・(2のn乗+1)----(1) この(1)式は n=1 のとき 右辺は0になります。 2の2乗は 2^2 と書いてください。 右辺=(n-1)・(2のn乗+1)   =(n-1)・(2^n+1) となりますが、これでよろしいのですか? 補足をお願いします。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます・・・。 なーんかそういう書き方があったような。と、思いつつ、 さっぱりおもいだせませんでした。 ごめんなさい。

質問者からの補足

はい。わかりましたー。

関連するQ&A

  • 数学的帰納法について

    数学的帰納法について質問があります。 数学的帰納法の問題で http://www.geisya.or.jp/~mwm48961/kou2/inductive_method3.htm のnが〇以上(〇には具体的な数値が入ります)のとき 証明せよ の問題の解き方は理解できるのですが考え方に不明な点があります。 __________________________________________________ 数学的帰納法は (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(A)が成り立つことを仮定する. その仮定を使って n=k+1 のとき(A)が成り立つことを証明する. __________________________________________________ とのことですがkは任意に自然数として理解をしていましたがこの考え方をすると、 nが〇以上の時について証明せよ。において (I) n=〇のとき(A)が成り立つことを証明する. (II) n=kのとき(k>=〇)(A)が成り立つことを仮定する の(k>=〇)の条件を書く必要があるのかがわかりません。 すなわち、 私が考えているのは、 (I) n=〇のとき証明できたのだから (II) n=kのとき(k>=〇)ではなくn=kのとき(k>=〇+1) と何故書かないのかということに疑問があります。 そのため、 すべての自然数 n について,次の不等式が成り立つことを証明せよ. の問題では、 (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(k>=1)(A)が成り立つことを仮定する. と書かないのか という内容に混乱をしています。 これについて先生に尋ねてみたら すべての自然数において問題は自然数1から必ず行うものだから (k>=1)というのは暗黙の了解である。 だから、書かなくていい といわれました。 この考え方にあまり納得いかないので、わかりやすく解説をしてください。

  • 数学的帰納法

    今高校で数学的帰納法をやっているんですが、模範解答を見ても解き方がわからない問題があります。 お力貸してください。 nを自然数とするとき、数学的帰納法によって次の等式を証明せよ。   (n+1)(n+2)(n+3)……(2n)=2のn乗×1×3×5×……×(2n-1)  模範解答・・・ [1]n=1のとき、左辺=1+1=2、右辺=2 より成り立つ。          [2]n=kのとき与式が成り立つと仮定すると、    (k+1)(k+2)(k+3)……(k+k)=2のn乗×1×3×5×……×(2k-1)  ------------------------------------------------------------   ここまでは分かります。以下がわかりません。  この両辺に〔(k+1)+k〕〔(K+1)+(K+1)〕を乗じると、(なんでここでこれを乗じるんですか??) 左辺=(K+1)(K+2)(K+3)…(K+K)〔(K+1)+k〕〔(K+1)+(K+1)〕    (以下こんな感じです) 右辺=・・・・・ k+1≠0より左辺と右辺を(K+1)で割ると、これはn=k+1のときにも与式が成り立つことを示している  [1][2]よりすべての自然数nに対し与式は成り立つ。  途中からがよくわかりません。分かる方いらしたら教えてください。

  • 数学的帰納法

    nが自然数のとき、次の等式(*)を数学的帰納法を用いて証明せよ。 2+4+6+…+2n=n(n+1)・・・(*) 今日、数学的帰納法を勉強すていて自分で回答をつくったのですが、これでいいのか見てもらえませんか? 2+4+6+…+2n=n(n+1) (1)n=1のとき、左辺2、右辺2、よって成り立つ (2)n=kのとき 2+4+6+…2k=k(k+1)・・・1 が成り立つと仮定すると n=k+1 2+4+6+…2k+2(k+1)=(k+1)(k+2)・・・2 が成り立つことを証明する 2+4+6+…2k+2(k+1)=k(k+1)+2(k+1)・・・3 2と3の右辺が一致するので、(*)は成り立つ (1)(2)より、すべてな自然数は成り立つ ・・・3のところを 2+4+6+…2k+2(k+1)=k(k+1)+2(k+1) =(k+1)(k+2) =kの2乗+3k+2 よって成り立つ こうしてもよいのでしょうか 自分でつくったためあっているかわかりません 教えてください。

  • 【数学B】数学的帰納法 発展問題

    まず、問題を書きます。 /////////////////////////////////////////// 問 nは自然数とする。数学的帰納法によって、次の不等式を証明せよ。 1) 1^2+2^2+3^2+・・・・・・+n^2<(n+1)^3/3 /////////////////////////////////////////// 見にくいですが。 解答を見てみたのですが、何か僕にとって大事なところが抜けていて、何言ってるかわかりませんでした。 帰納法で i)n=1のとき ii)n=kのとき で考えるところまでは分かりますが、n=kでnにkを代入した式を仮定するまでしか駄目でした。 この数学的帰納法の証明方法はいくつかあると思いますが、 一番、簡潔で分かりやすく証明できる方法を教えてください。 お願いします。

  • 数学的帰納法~整数であることの証明

    数学的帰納法の初歩(?)の質問です。 問。nは自然数とする。2数x,yの和、積がともに整数のとき、x^n+y^n整数であることを、数学的帰納法によって証明せよ。 という問題なのですが、解説に i)n=1,n=2のときに成り立つことを示す ii)n=k,n=k-1であると仮定して、n=k+1のときにも成り立つことを示す とありました。 また、注がついており、 『x^(k+1)+y^(k+1)=(x^k+y^k)(x+y)-xy{x^(k-1)+y^(k-1)}である』とありました。 なぜ『』だからi)でn=2を、ii)でn=k-1を書かないといけないのですか? お願いします。

  • 数B 数学的帰納法 

    nは自然数とする。数学的帰納法を用いて、次の等式を証明せよ。 1+4+7+・・・・+(3n-2)=1/2n(3n-1)・・・・A という問題でn=kのときAが成り立つと仮定すると   1+4+7+・・・・+(3k-2)=1/2k(3k-1)である。この式に3(k+1)-2を加えると...とありますが、3(k+1)-2はどのようにして出すのかわからないので教えてください。宜しくお願いします。

  • 数学的帰納法

    nは自然数とする。5^(n+1) + 6^(2n-1) は31で割り切れることを証明せよ。という問題です。 数学的帰納法でとくと・・・ (1)n=1のとき 5^(n+1) + 6^(2n-1) =5^(1+1) + 6^(2-1) =5^2 + 6 =25+6 =31 となり、成り立っている。 (2)n=kのときも成り立っていると仮定すると 5^(k+1) + 6^(2k-1)となり、これは31の倍数である。 よって5^(k+1) + 6^(2k-1)=31Mとあらわすことができる(M:整数) n=k+1のとき 5^(k+1+1) + 6^(2(k+1)-1) =5^(k+2) + 6^(2k+1) ここまではわかりました。 この問題はn=k+1のときも31の倍数であることを証明すればいいのですよね? しかし5^(k+2) + 6^(2k+1)から 31{・・・・}となるように持っていくことができませんでした。 (私の考えが違っていたらすいません。) 解答を見たら(n=k+1のときの前までは解答と同じでした。) n=k+1のとき 5^(k+1+1) + 6^(2(k+1)-1) =5(5^(k+1) + 6^(2k+1)+31・6^2k-1 となっています。 これは31の倍数であるから、n=k+1のときも成り立つ。 (1)(2)より、すべての自然数について命題が成り立つ。 となっていました。 どうやって、5(5^(k+1) + 6^(2k+1)+31・6^2k-1に持っていたのですか? できる限り詳しく教えてください。お願いします。

  • 数学的帰納法の証明

    自然数に関する数学的帰納法の原理が自然数が整列集合であることと同値であるということはわかっていますが 次のように数学的帰納法を証明した場合どこに整列集合の性質が使われているor論法が間違っているのでしょうか。 数学的帰納法 自然数nに関する命題をP(n)とする (ⅰ)P(0)が成り立つ (ⅱ)すべての自然数nに対して、P(n)が成り立つならばP(n+1)も成り立つ この2条件が満たされているときP(n)はすべての自然数nについて成り立つ (論理記号でかくと(ⅱ)は(∀n∈N(P(n)⇒P(n+1))だと思います) [証明] P(n)が成り立たないような集合をSとする Sが空集合である事を示せばP(n)がすべての自然数nについて成り立つ事になる Sが空集合でないと仮定するとm∈Sとなるようなmが存在する このとき条件(ⅱ)を次のように書き換えて (II)すべての自然数nに対して、P(n+1)が成り立たないならばP(n)も成り立たない と考えると P(m)が成り立たないのでP(m-1)も成り立たないことになる このときP(m-1)が成り立たないのでP(m-2)も成り立たない 以下続けると結局 P(1)が成り立たないのでP(0)も成り立たないことになるが これは(ⅰ)に反する よってSが空集合でないという仮定が間違っていたことになる ゆえにSは空集合であり命題P(n)がすべての自然数nに対して成り立つことが示された

  • 数学的帰納法の不等式の問題です

    数学的帰納法の不等式の問題です。 nは自然数とする。不等式 2n が成り立つことを、数学的帰納法を用いて証明せよ n=1のときはわかるのですが、n=kのとき成り立つと仮定してn=k+1のときに成り立つことを証明する解き方がわかりません。 教えてください!

  • 数学的帰納法

    問 すべての自然数nについて、次の等式が成り立つことを数学的帰納法によって証明せよ。 1・2+2・3+3・4+……+n(n+1)=1/3n(n+1)(n+2) 〔1〕n=1のとき までは解るんですが 〔2〕n=kのとき 以降の解法が解りません。 教えていただけたら有難いです。