• ベストアンサー
  • すぐに回答を!

量子力学の問題です

量子力学の問題です ヘリウムの1価の陽イオンについて 基底状態から最低エネルギーの励起状態になった時 励起状態を表す波動関数を r θ φ ボーア半径a0を用いて示せ という問題が分かりません 解説よろしくお願いします

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数316
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • alwen25
  • ベストアンサー率21% (272/1253)

ヘリウムの1価陽イオン=水素様原子 なので水素原子の波動関数の核電荷Z=+2 とすればいいだけです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 量子力学2体問題

    量子力学の陽子と中性子が核力によって結合している2粒子系の状態についてです。 全質量と換算質量の2つのシュレディンガー方程式をたて、その次に換算質量についてのシュレディンガー方程式を動径部分と角度部分に分け(R(r)とY(θφ))動径部分について考えます。R(r)=χ(r)/rとしてχ(r)の微分方程式を求めました。 次に核力を表すポテンシャルとしてV(r)=∞(r<a) -V。(a<r<c) 0(c<r) の斥力芯を持つ井戸型ポテンシャル(V。>0)でb=c-aとして束縛状態が基底状態であるとするときエネルギー固有値を求める関係式を求める問題なのですが、このときの基底状態とはR(r)とY(θφ)についての微分方程式=λ(=l(l+1))とするとl=0としていいのなぜですか?その理由がよくわからないです。 またこのときの規格化された波動関数とはχ(r)について解けばいいのですか? 解き方を教えて下さい。

  • 量子力学について

    一次元の系を考え、-∞<x<∞にある電子の状態に対してポテンシャルのV(x)が、 V(x)={ +∞ (x≦0) , -V (0<x≦a) , 0 (a<x)} (V、a正の定数) であるとき、基底状態のエネルギー固有値と波動関数をもとめよ。(ただし、規格化定数は気にしなくてよく、-Vは十分深く、束縛状態は必ずできるものとする。) という問題で、エネルギー固有値を求めようとしたのですが、式が複雑でエネルギー固有値を求めら・れませんでした。どうにかして、基底状態のエネルギー固有値と波動関数だけを求める方法はないでしょうか? 回答よろしくお願いします。

  • 量子力学

    猪木・川合著「量子力学I」p.162、または「基礎量子力学」p.131に 波動関数の規格化条件としてs>-1/2としてありますが s>-3/2のように思いますが、お教えくださいませんか。

  • ヘリウムの2電子波動関数の基底状態を1/√2・φ_1s(1)φ_1s(

    ヘリウムの2電子波動関数の基底状態を1/√2・φ_1s(1)φ_1s(2)[α(1)β(2)ーα(2)β(1)]と表す。ここで、φ_1s(1)は1s軌道を電子1が占めていることを示し、α(1)、β(1)は、電子1のスピンが上向き、または下向きであることを示す。同様にして、第一励起状態と第二励起状態の規格化された波動関数を表せ。(複数ある場合にはそれも示すこと)また、その波動関数を使って第二励起状態と第一励起状態についてハミルトニアンの期待値を書き表し、エネルギー差を示せ。また、エネルギー差が生じる理由を述べよ。 という問題で、前半は、第一励起状態1/√2[φ_1s(1)φ_2s(2)-φ_1s(2)φ_2s(1)]α(1)α(2),1/√2[φ_1s(1)φ_2s(2)-φ_1s(2)φ_2s(1)]β(1)β(2)],1/2[φ_1s(1)φ_2s(2)-φ_1s(2)φ_2s(1)][α(1)β(2)+α(2)β(1)],第二励起状態1/2[φ_1s(1)φ_2s(2)+φ_1s(2)φ_2s(1)][α(1)β(2)ーα(2)β(1)]だと思うのですかあってますか?後半で、αやβを含めた波動関数の∫ΦHΦをどうやって求めればいいのかがわかりません。どなたかご教授お願いします。

  • 量子力学(原子物理学?)についての質問です。

    量子力学(原子物理学?)についての質問です。 次のurlのページの内容でHe原子の基底状態のエネルギーを波動関数を使用せずにボーアの量子条件と単純な原子モデルからかなり正確な値を出しています。 http://www7b.biglobe.ne.jp/~kcy05t/niho.html この手法を用いればすべての原子の模型を作ることやで正確な基底状態のエネルギーやスペクトル、分子の中の電子の状態などを求めることができると考えました。 私は素人でしてでurlのページに書いてあることの真偽の判別がつきませんのでどなたかご教授していただけるとありがたいです。 よろしくお願いいたします。

  • 量子力学における状態について

    よく量子力学の本で"波動関数は量子力学的状態を表す"とありますが,"量子力学的状態"というのはどういうことなのでしょうか? Wikipediaでは"量子状態"の方で載ってありましたが,"すべての物理量の測定値が一定の確率分布をもつような仕方で系が準備されているとき、その系の状態を指してある量子状態という"とありました.

  • 量子物理学(シュレディンガー方程式)

    無限の高さのポテンシャルがx≦-d/2とx≧d/2にあるとき、 (1)-d/2≦x≦d/2におけるシュレディンガー方程式を示し、その一般解を求めよ (2)波動関数を求めよ。偶関数と奇関数に場合わけしなさい (3)基底状態の波動関数を規格化せよ。 (4)基底状態、第一励起状態、第2励起状態の波動関数の概形を図示せよ。 (5)領域の幅dを変えると、粒子のエネルギーはどうなるか? 私の回答 (1)(-h^2/2m)(d^2x/dx^2)=Eφ φ=Acoskx+Bsinkx (2)φ=Acos{(2n-1)πx/d} φ=Bsin(2nπx/d) (hはhバー) ここまではできるのですが、後の問題が分かりません・・・ 詳しい方教えてください!

  • 量子論について

    調和振動子のシュレディンガー方程式の基底状態と第一励起状態のエネルギー準位と波動関数を求めなさい。 この問題の趣旨と答えがわかりません。 教えてください。

  • 量子力学の問題です><

    いろんな問題を解いているところなのですが、無限と有限が混じった井戸型ポテンシャルの問題がよくわかりません… 次のポテンシャル V(x)= ∞(x<0)、0(0≦x≦a)、Vo(a<x) の束縛状態のエネルギー固有値を求めよ。また、基底状態の波動関数の概形を図示せよ。 という問題です。もしわかる方がいたら教えてください。 よろしくおねがいします><

  • 量子力学の初歩的な問題です

    量子力学の初歩的な問題です 1.調和振動子の固有エネルギーを記せ 2.いわゆる箱型ポテンシャルの固有波動関数を記せ という問題を出されて困っています。 参考になるページかできれば答えを教えてもらえないでしょうか