• 締切済み
  • すぐに回答を!

量子力学の問題です><

いろんな問題を解いているところなのですが、無限と有限が混じった井戸型ポテンシャルの問題がよくわかりません… 次のポテンシャル V(x)= ∞(x<0)、0(0≦x≦a)、Vo(a<x) の束縛状態のエネルギー固有値を求めよ。また、基底状態の波動関数の概形を図示せよ。 という問題です。もしわかる方がいたら教えてください。 よろしくおねがいします><

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数356
  • ありがとう数0

みんなの回答

  • 回答No.1

この手の問題をここで解説するのはめんどうなので参考書を紹介します。 共立出版「詳解量子力学演習」p.46にそのものずばりの問題が載ってます。 この本か 裳華房「大学演習量子力学」(小谷正雄・梅沢博臣・小幡行雄・水野幸雄・江沢 洋) の2冊があれば、だいたいの問題は解けます。 自分が学生のときはこの2冊で解けないときは図書館で別の演習書を探して解きました。 とくに電磁気学・量子力学・統計力学については、良い演習書が多いので、 少なくとも1冊は手元において、 そこから類題を探したほうが早いと思います。 こういう場所で質問するならば、そのうえで分からないところを絞って質問するといいかと思います。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 量子力学について

    一次元の系を考え、-∞<x<∞にある電子の状態に対してポテンシャルのV(x)が、 V(x)={ +∞ (x≦0) , -V (0<x≦a) , 0 (a<x)} (V、a正の定数) であるとき、基底状態のエネルギー固有値と波動関数をもとめよ。(ただし、規格化定数は気にしなくてよく、-Vは十分深く、束縛状態は必ずできるものとする。) という問題で、エネルギー固有値を求めようとしたのですが、式が複雑でエネルギー固有値を求めら・れませんでした。どうにかして、基底状態のエネルギー固有値と波動関数だけを求める方法はないでしょうか? 回答よろしくお願いします。

  • 量子力学2体問題

    量子力学の陽子と中性子が核力によって結合している2粒子系の状態についてです。 全質量と換算質量の2つのシュレディンガー方程式をたて、その次に換算質量についてのシュレディンガー方程式を動径部分と角度部分に分け(R(r)とY(θφ))動径部分について考えます。R(r)=χ(r)/rとしてχ(r)の微分方程式を求めました。 次に核力を表すポテンシャルとしてV(r)=∞(r<a) -V。(a<r<c) 0(c<r) の斥力芯を持つ井戸型ポテンシャル(V。>0)でb=c-aとして束縛状態が基底状態であるとするときエネルギー固有値を求める関係式を求める問題なのですが、このときの基底状態とはR(r)とY(θφ)についての微分方程式=λ(=l(l+1))とするとl=0としていいのなぜですか?その理由がよくわからないです。 またこのときの規格化された波動関数とはχ(r)について解けばいいのですか? 解き方を教えて下さい。

  • 量子力学について

    束縛状態で波動関数の2乗したものを積分したら1になるように規格化するというのは波動関数の2乗を確率密度とするためだと思うのですが散乱状態で波動関数をデルタ関数で規格化するというのがよくわかりません。回答よろしくお願いします。

  • 量子物理学(シュレディンガー方程式)

    無限の高さのポテンシャルがx≦-d/2とx≧d/2にあるとき、 (1)-d/2≦x≦d/2におけるシュレディンガー方程式を示し、その一般解を求めよ (2)波動関数を求めよ。偶関数と奇関数に場合わけしなさい (3)基底状態の波動関数を規格化せよ。 (4)基底状態、第一励起状態、第2励起状態の波動関数の概形を図示せよ。 (5)領域の幅dを変えると、粒子のエネルギーはどうなるか? 私の回答 (1)(-h^2/2m)(d^2x/dx^2)=Eφ φ=Acoskx+Bsinkx (2)φ=Acos{(2n-1)πx/d} φ=Bsin(2nπx/d) (hはhバー) ここまではできるのですが、後の問題が分かりません・・・ 詳しい方教えてください!

  • 量子力学の問題です

    量子力学の問題です ヘリウムの1価の陽イオンについて 基底状態から最低エネルギーの励起状態になった時 励起状態を表す波動関数を r θ φ ボーア半径a0を用いて示せ という問題が分かりません 解説よろしくお願いします

  • 量子力学について

    k/r (kは定数 r=(x^2+y^2+z^2)^1/2) のポテンシャルエネルギーをもつ保存系の場合に、定常状態のシュレディンガー方程式を具体的に書き下すと        (-(h/2π)^2/2mΔ+k/r )Ψ=EΨ (Eは固有値 Ψは波動関数 ) これであっているでしょうか? 回答よろしくお願いします。

  • 量子力学の以下の問題の解説が理解できずに困ってます

    問題3.1 ポテンシャルV(x)はx < 0 のとき+∞ 0 < x < a のとき -Vo (Vo>0) x > a のとき 0 に対する1次元束縛運動のエネルギー固有値はどのようにして求められるか。また束縛状態(ε<0)が存在しうるためには a^2Vo≧(hbar)^2π^2/8m でなければならないことを示せ。 解説の画像は以下のURLに載せました。 ここで質問なのですが、 φ外'(a)/φ外(a) < 0 とありますが、なぜわざわざこれを考えなければならないのでしょうか? いきなりこの式がポンとでてきたので困ってます。

  • 量子力学の以下の問題の解説について

    http://okwave.jp/qa/q8011047.html  の続きの部分で質問があります。(前のページに行かなくても問題を把握できるようにしています) 問題3.1 ポテンシャルV(x)はx < 0 のとき+∞ 0 < x < a のとき -Vo (Vo>0) x > a のとき 0 に対する1次元束縛運動のエネルギー固有値はどのようにして求められるか。また束縛状態(ε<0)が存在しうるためには a^2Vo≧(hbar)^2π^2/8m でなければならないことを示せ。 ここで質問なのですが、左のページ一番下の数式 cot(ka)=-κ/k からエネルギー固有値を出すということで、この方程式一つを解いてεを出すことはできないのでしょうか?(私には無理でしたが・・・・) ちなみに、交点を求めて出すというやり方でも κ^2/cos^2(ka) = 2mVo/(hbar)^2 までは変形したのですが、そこからεをだすことができません。 どなたかご教授ください。

  • 三次元デルタ関数型ポテンシャルでの束縛状態

    量子力学の問題です。 V=-Voδ(r-a)のポテンシャルを取る三次元デルタ関数型ポテンシャルの束縛状態を考えています。l=0の基底状態について、束縛状態となるためのVoの条件を求めたいのですが、どうしても解けませんでした。 お手数ですが解答よろしくお願いします。

  • 量子力学について

    http://www.metro-u.ac.jp/~suzukitr/qma3.pdf#search='階段ポテンシャル'の46ページの井戸型ポテンシャルで0<Eのとき、領域IIIの波動関数が左から粒子が入射しているのになぜ exp(-ikx) の項があるのでしょうか? 回答よろしくお願いします。