- ベストアンサー
- すぐに回答を!
量子論について
調和振動子のシュレディンガー方程式の基底状態と第一励起状態のエネルギー準位と波動関数を求めなさい。 この問題の趣旨と答えがわかりません。 教えてください。
- crazydo765
- お礼率25% (17/66)
- 物理学
- 回答数1
- ありがとう数1
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- NemurinekoNya
- ベストアンサー率50% (540/1073)
まず、シュレディンガー方程式を整理すると、 d^2u/dt^2 + 2m/h^2(E - 1/2・mω^2)u = 0 (1) という2階の微分方程式になります。 ここで、uは波動関数、h=プランク定数/2π このままですと、計算が大変なので、 ξ = αx、 α = √(mω/h)、 λ = 2E/hω (2) として、(1)を書き換えると、 d^2u/dt^2 + (λ-ξ^2)u = 0 (3) (3)の微分方程式を解けばいい(ニコニコ)。 (3)を解くのは、実は、結構、大変。 そこで、 u = e^(-1/2・ξ^2)・H(ξ) と仮定して、(3)の微分方程式を書き換えると、 d^2H/dx^2 - 2ξdH/ξ + (λ-1)H = 0 (4) となるので、これの級数解を求める・・・。 ガンバレ~!! 質問者さんの数学力がどの程度なのか知らないのですが、 たぶん、解けないと思うので・・・、 たとえば、 http://www.th.phys.titech.ac.jp/~muto/lectures/QMI10/QMI10_chap09.pdf などをご覧になってください。 ここでは、ξがsになっているけれどもね。 ここに求めるものは全て出ています。 ちなみに、 基底状態はλ=1、第一次励起状態はλ=3です。 微分方程式は解けなくても、 エネルギー準位だけは λ = 2E/hω の式から出てきます。 Hの正体は、エルミート多項式と呼ばれるものです。 この微分方程式の解き方は、他にもあることはあるのだけどね。 これが一番オーソドックスな解き方です。
関連するQ&A
- 量子化学について
量子化学について詳しい方、助けてください(>_<) 1.一次元のシュレーディンガー方程式を書き、V(x)=一定のときの波動関数を示せ。 また運動エネルギーTを正と負の場合について考慮すること 2.相対座標について述べ、分子の並進運動と分子の振動.回転運動との分離について説明せよ。 3.調和振動子モデルを用いた振動エネルギーについて説明し、振動波能関数の性質について述べよ。 4.シュレーディンガー方程式の変数分離について水素原子を例にとり説明せよ。 5.水素原子の軌道について、波動関数、シュレーディンガー方程式、量子数などの用語を説明せよ。 です(>_<) ちなみにテストの問題とかではなく 自分でわからなかったので教えて頂けたら助かります。 よろしくお願いします。
- 締切済み
- 化学
- 量子物理学(シュレディンガー方程式)
無限の高さのポテンシャルがx≦-d/2とx≧d/2にあるとき、 (1)-d/2≦x≦d/2におけるシュレディンガー方程式を示し、その一般解を求めよ (2)波動関数を求めよ。偶関数と奇関数に場合わけしなさい (3)基底状態の波動関数を規格化せよ。 (4)基底状態、第一励起状態、第2励起状態の波動関数の概形を図示せよ。 (5)領域の幅dを変えると、粒子のエネルギーはどうなるか? 私の回答 (1)(-h^2/2m)(d^2x/dx^2)=Eφ φ=Acoskx+Bsinkx (2)φ=Acos{(2n-1)πx/d} φ=Bsin(2nπx/d) (hはhバー) ここまではできるのですが、後の問題が分かりません・・・ 詳しい方教えてください!
- ベストアンサー
- 物理学
- 一次元調和振動子の波動関数
<一次元調和振動子の基底状態、第一励起状態、第二励起状態の波動関数を求めよ。> という問題で、最終的にどのような形で表せばよいのでしょうか。 まだ勉強したてでよくわかりません。 最終的な形だけで良いので、教えていただけないでしょうか。 よろしくお願いいたします。
- ベストアンサー
- 物理学
- 量子力学の問題で困っています
量子力学の問題なのですが手元に資料が少なく、またネットで調べてもよくわからないので誰か教えて下さい。 1次元の調和振動子の規定状態の波動関数は一座表表示で次のように書ける Ψ(x,t) = Aexp(-2mωx^2/2h)exp(-iωt/2) これが調和振動子のシュレディンガー方程式の解であることを確かめなさい という問題なのですが調和振動子のシュレディンガー方程式というのは (-h^2/2m)d^2Ψ/dx^2 + mω^2x^2Ψ/2 = EΨ でいいのでしょうか? この方程式では時間の項を考慮していないように見えるのですが また、運動量の固有関数が f(x) = (1/√2πh)exp(ipx/h) であることを用いて、この波動関数Ψ(x,t)の運動量表示Φ(p,t)を求めなさい という問題も計算がうまくいかなくて困っています。教えていただけませんか? 式中のhは全てエイチバーです。よろしくお願いします
- 締切済み
- 物理学
- 物理化学、量子力学の問題
院試の問題を解いていてどうしても手がつけられない問題があったので質問します。それぞれの相違点を明確に教えて頂けるとありがたいです。 水素原子、水素分子の電子状態に関する下記の事項について説明せよ。解答にあたっては各自必要な記号などを定義してよい。 1)水素原子に関するシュレーディンガー方程式 2)基底状態にある水素原子の波動関数 3)励起状態にある水素原子の波動関数の分布 4)水素分子に関するシュレーディンガー方程式 5)原子価結合法による水素分子の波動関数 6)分子軌道法による水素分子の波動関数 です。よろしくお願いします。
- ベストアンサー
- 化学
- 三次元の調和振動子と軌道角運動量
三次元の調和振動子の波動関数はエルミート多項式を使った一次元のと同じようなものになると思います。(違ったらいってください。) この基底状態と第一励起状態と第二励起状態の波動関数を組み合わせて、軌道角運動量の固有関数を作ることはできますか? できるならどのようにすればいいですか? お願いします。
- 締切済み
- 物理学
- 工学部(機械系)なんですが,
「基礎量子力学」の講義を受けて得られたことは 何かの役に立つのでしょうか。 波動関数やシュレディンガー方程式、 そこから求められたエネルギーの式、調和振動子 などを習ったのですが、感想を書けと言われて困っています。 電子の持つエネルギーや太陽の温度を求めたりと、あまり役に立たなさそうなのですが。
- ベストアンサー
- 物理学
- 量子力学の初歩的な問題です
量子力学の初歩的な問題です 1.調和振動子の固有エネルギーを記せ 2.いわゆる箱型ポテンシャルの固有波動関数を記せ という問題を出されて困っています。 参考になるページかできれば答えを教えてもらえないでしょうか
- ベストアンサー
- 物理学
質問者からのお礼
ありがとうござます。 私の数学力だと確かにきついですね(大学一年汗) これを参考に試験対策頑張ります。