• ベストアンサー
  • すぐに回答を!

高1数学 (サインなどの図形編)

進研模試の過去問です。1問でもいいのでわかる方は解説願います。 Q1 AB=2、AC=1、角A=120の△ABCがある。辺AB上にCD=√3となるような点Dを取り、 点Dの直線BCに関する対称点をEとするとき、cos角ABEの値はいくらか? Q2 AB=7、BC=5、CA=4の△ABCがあり、辺AB上に角ACD=90度となるような点Dがある。 (1) ADの長さはいくらか? (2) △BCDの外接円の半径はいくらか? (3) (2)で、円の中心をOとするとき、四角形OBDCの面積はいくらか? ちなみに、Q1の答えは11/14  Q2(1)が28/5  (2)が7/2 (3)が33√6/10 でした。 この答えの導き方をお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数623
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

>この答えの導き方をお願いします。 Q1. 余弦定理を△ABCに適用  BC^2=2^2+1^2-2*2*1*cos120° → BC=√7 cosB=(2^2+7-1^2)/(2*2√7)=(5√7)/14 ∠ABE=2∠Bより  cos∠ABE=cos(2B)=2cos^2(B)-1=11/14 Q2. (1) 余弦定理を△ABCに適用 cosA=(7^2+4^2-5^2)/(2*7*4)=5/7 AD=AC/cosA=4/cosA=28/5 (2) sinA=√(1-(cosA)^2)=(2√6)/7,tanA=sinA/cosA=(2√6)/5 △ABCに余弦定理を適用 cosB=(7^2+5^2-4^2)/(2*7*5)=29/35 sinB=√(1-(cosB)^2)=8√6/35 △BCDに正弦定理適用 2R=CD/sinB=AC*tanA/sinB=4tanA/sinB R=2((2√6)/5)/(8√6/35)=7/2 (3) 図を描いて下さい。 余弦定理を△ABCに適用 cosC=(4^2+5^2-7^2)/(2*4*5)=-1/5, sinC=√(1-(cosC)^2)=(2√6)/5 円周角と中心角の関係を使うと S=(R^2)sinBcosB+(R^2)sin(C-90°)cos(C-90°) =((7/2)^2)(sinBcosB-cosCsinC)=(33√6)/10 [ポイント]写すだけでは意味がありません。 三角関数の基本式、正弦定理、余弦定理、円周角の性質を使えば出来る問題です。教科書、参考書を復習して使いこなせるようにしておいて下さい。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 図形を教えてください。

    AB=7,BC=5,CA=4の三角形ABCがある。また、辺AB上に点Dがあり、角ACD=90°である。 (1)三角形BCDの外接円の半径Rを求めてください。また、この円の中心をOとするとき、四角形OBDCの面積を求めるという問題が、 sin角度BCD=sin角ADC=cosA=5/7だから、 R=5/2sin角BDC =5÷(2×5/7) =5÷(10/7) =5×7/10 =7/2 までは、理解できたのですが、どうしても、この円の中心をOとするとき、四角形OBDCの面積を求めろという問題が解けないので、途中式もふくめてわかりやすく教えてもらえませんか?

  • 数学

    図のように、AB=2、BC=3√2、cosB=√2/3の△ABCがあり、辺BC上にAB=ADとなるように点Dをとる。 △ACDの外接円の半径を求めよ。 教えてください。お願いします。

  • 数学の図形の性質などで三角形の外接円がうまくかけま

    数学の図形の性質などで三角形の外接円がうまくかけません。 例えば次のような問題 三角形ABCにおいて、AB=AC=5、BC=√5とする。辺AC上に点DをAD=3となるようにとり、辺BCのBの側の延長と三角形ABCの外接円との交点でBと異なるものをEとする。 についてですが、外接円が歪んで円になりません。書きやすい方法とかってありますか?

  • 数学の三角比の問題です。

    AB=3、∠A=60°の△ABCがあり、△ABCの外接円の半径は√39/3である。 (1)辺BCの長さを求めよ。 (2)辺ACの長さを求めよ。また、tanBの値を求めよ。 (3)直線BC上に∠BAD=90°になるように点Dをとる。線分ADの長さを求めよ。 また、線分ACを折り目として、△ACDを折り曲げ、平面ABCと平面ACDが垂直になるようにする。 折り曲げた後の点Dに対して、線分BDの長さを求めよ。 宜しくお願いします。

  • 高校1年図形問題

    高校1年の数学の問題です。 問題;BC=3,CA=4,cosB=-1/4(マイナス4分の1)    である△ABCがある。 (1)sinBの値を求めよ。 (2)辺ABの長さを求めよ。また、△ABCの面積を求めよ。 (3)△ABCの外接円の周上にBと異なる点Dを、BC=CDとなるようにとり、  ACとBDの交点をEとする。このとき、CEの長さを求めよ。また、  △CDEの面積を求めよ。 …です。 全く解らないので、教えてください!! (もしよければ図を付けて下さい)

  • 図形の問題がわかりません

    同一平面上に4点O、A、B、C、Dがあり、Oは△ABCの外接円の中心である。 AB=5、BC=8、CD=5、DA=3、∠ABC=60°とする。 (1)CA= (2)cos∠CDA= (3)△ABCの外接円の半径R= (4)△OCAの面積S1= (5)四角形ABCDの面積S2= どれか1つでもいいので、解き方を教えてください。

  • 三角比

    AB=7,BC=5,CA=4の三角形ABCがある。 また、辺AB上に点Dがあり、 ∠ACD=90°である。 線分ADの長さを求めよ。 また、三角形BCDの外接円の半径Rを求めよ。 なんですけど、どうすれば良いんでしょうか? ちなみに計算ミスしていなければ cosA=5/7 でsinA=2√6/7 面積S=4√6 です。

  • 図形の計量のいろいろな問題

    △ABCにおいて、3cosA=2sin^2Aが成り立っている。 (1)角Aの大きさを求めよ。 (2)△ABCの外接円の半径が√21/3のとき、辺BCの長さを求めよ。 (3)さらに、△ABCの面積が3√3/4のとき、辺AB,ACの長さを求めよ。ただしAB>ACとする。 わかりません(・_・;) 教えて下さい//

  • 三角比

    三角比の問題 △ABCにおいて、AB=2,BC=3,cosA=1/3である。 (1)sinAの値を求めよ。また△ABCの外接円の半径を求めよ。  sinA=(2√2)/3 R=(9√2)/8 (2)辺ACの長さを求めよ。  AC=3 (3)△ABCの外接円の直径がADとなるように、点Dをとる。このとき△BCDの面積を求めよ。   (2)まではわかりましたが(3)が分からないので教えてください。

  • 数学I 三角比の図形(正弦・余弦定理)の問題

    基本的な問題ばかりですが解いてみたものの回答が手元になくて困っています。多いですがよろしくお願い致します。 1.△ABCでAB=4 , AC=5 , BC=2とする。 (1)cosAを求めよ。 (2)△ABCの面積を求めよ。 (3)外接円の半径を求めよ。 2.△ABCで∠A=60°, AB=3 , AC=4とする。 (1)BCを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 3.△ABCでAB=5 , AC=6 , BC=√91とする。 (1)∠Aを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 4.△ABCでAB=7 , AC=5 , ∠A=60°とする。 (1)BCを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 5.△ABCでAB=2 , AC=4 , BC=3とする。また∠Aの二等分線とBCの交点をDとする。 (1)BDを求めよ。 (2)cos∠Bを求めよ。 (3)ADを求めよ。