• ベストアンサー

ラプラス変換とかどうやって思いつくんだよ

微分はs倍  積分は1/s倍 こういう関係を使えば線形微分方程式とかただの代数方程式にもっていけて 解は逆変換の一意性から求まる ↑に書いたことはよく知られたことですが 「f(t)にexp(-st)をかけて0から∞まで積分しよう」 なぜラプラスさんはこういうことをしようと思ったんですか? 微積が簡単になるから?そのために色々考えた結果がこれってことですか? 数学史(?)に詳しい方教えてください

質問者が選んだベストアンサー

  • ベストアンサー
  • chie65535
  • ベストアンサー率43% (8520/19369)
回答No.1

ヘビサイドの演算子法というのが基礎。 ヘビサイドの演算子法は、電気工学の世界で使われてきたけど、数学的に証明しなかった為、数学界から無視されてた。 「どうしてそうなるか判らないけど、そうなっちゃうんだから、それ使ってやれば簡単に計算できるから、それで計算しよう」って感じで使われてた訳。 数学的に証明しなくたって、電気工学の世界で実用になるなら、証明なんてする必要は無かったんですね。 で、ヘビサイドの演算子法を基礎に、変換を数学的に証明したのがラプラス。ラプラスがゼロから思い付いた訳じゃありません。 ラプラスが思い付いたのは「こうやりゃ証明できるじゃん」という、数学的な証明の方法です。

anisakis
質問者

お礼

演算子があったから あとはどのようにその演算子に近づけるかを一生懸命考えたということですか ありがとうございました

関連するQ&A

  • 機械工学と数学

    機械工学で特に重要な数学は何ですか? 【微積分/線形代数/ベクトル解析/フーリエ級数/ラプラス変換/偏微分方程式/常微分方程式/複素解析】

  • 機械学習エンジニア

    機械学習エンジニアになるためには、数学の知識は必須ですか?大学は機械系だったので、線形代数・微分積分・微分方程式・ラプラス変換などは学習済みです。

  • 偏微分方程式のラプラス変換による解法

    皆様よろしくお願いいたします。 関数u(x,t)のtに関する偏微分∂u/∂t=u_t、とxに関する2回偏微分∂^2 u/∂x^2=u_xxとおくとき 偏微分方程式 u_t = a*u_xx (aは正の定数) 初期条件:u(x,0) = 0 境界条件:∂u/∂x = u_x = -k (kは正の定数)        lim[x→∞]u(x,0) = 0 をラプラス変換して解を求めようとしてますが、ラプラス変換した式が導けません。 偏微分方程式の解は分かっていているので、解をラプラス変換すると答えは次式になるようです。 U(s,x) = k√a・exp( -x*√(s/a) ) / s^(3/2) どのように導けばこうなるのかご教示ください。 ちなみに偏微分方程式の解は次式になります。(上式に入れて成り立つことを確認済み)  u(x,t)=2k√(at/π)・exp(-x^2/(4at)) - kx・erfc(x/√(4at)) (※erfcはガウスの余誤差関数です) 【途中までやってみた計算経過】 偏微分方程式を→s、x→yへそれぞれラプラス変換して整理すると U(s,y)=ak/{y(y^2-s/a)} となりました。これをy→xへラプラス逆変換すると U(s,x) = -ka^2/s + ( ka^2/(2s) ) exp(-x√(s/a) ) + ( ka^2/(2s) )exp(x√(s/a) ) となり、答えになりません。 しかもこれだと3項目が境界条件lim[x→∞]u(x,0) = 0に従わず∞に発散してしまいます。

  • ラプラス変換 z変換 安定性

    今、こんな順番↓で工業数学の勉強を進めています。 (1)回路応答(微分方程式での解法) (2)ラプラス変換 (3)z変換 (4)フーリエ このなかで、「ラプラス変換でのs平面の範囲」と「アナログシステムの安定性でのs平面の範囲」が理解できないでいます。 ↓の2つの考えでのσの範囲のところです。 (1)ラプラス変換では積分結果を収束させるため、収束因子exp(-st)を定義。すなわち、s=σ+jω>0 ⇔ σ>0。要するに、ラプラス変換で定義されているs平面(s=σ+jω)はσ>0。 (2)アナログシステムの安定性では、σの範囲が、-∞<σ<+∞。 σの範囲がラプラス変換以降に拡張されているようにみえるのですが、どう理解すればよいのでしょうか? --- ラプラス変換ではσ>0(過渡応答が発散するシステムのみ変換可)なのに、フーリエ変換などでの周波数応答では過渡応答は無視(σ=0)して解析する、といっているようで理解できない・・・ フーリエ変換の拡張がラプラス変換なら、なぜラプラス変換ではσ>0?? --- よろしくお願いします。

  • AI時代と数学力

    今後のAI時代で数学力は鍛えておいた方がいいですか?数学は苦手ではありませんが、仕事の関係でたまに勉強しています。大学の数学の講義では、微積分、線形代数、常微分方程式、ラプラス変換、複素関数、フーリエ解析などを学びました。個人的に好きだったのはラプラス変換です。

  • 大学数学について

    今年理学部数学科に入学する者です。 大学1年次での数学とは主になにをするのでしょうか? 微積分と線形(線型)代数は必ずやるということくらいしか知らないのですが・・・ あと微積分や線形代数でいい参考書や演習本とかないでしょうか? 基礎から発展的なものまで網羅されてるものは少ないとは思いますが 数学科であるからにはただ単位を取るだけの暗記型の勉強はしたくないです。 大学生活を浪費しないためにも良い本と出会って数学に没頭したいので・・・ 一応自分で調べたものは 「線形代数マスター30題 加藤 明史」「単位がとれる線形代数・微積・微分方程式」「線形代数入門・演習 齋藤 正彦」です これ以外でも結構ですし上記の本に対しての意見でもかまいません。 長文になってしまい申し訳ありません。 どなたか回答よろしくお願い致しします。

  • ラプラス変換で微分方程式の一般解を求めるには限界がある?

    ラプラス変換を覚えて、微分方程式を簡単に解いてしまおうと思い勉強していたのですが、 y' = (1+x)y という問題において、 y(0) = a , L[y(t)] = Y(s) , L[y'(t)] = sY(s) - y(0) とし、与式の両辺のラプラス変換を取って sY(s) - a = Y(s) - Y'(s) <-像関数の微分法則より となると思います。このY'(s)の処理の仕方が分かりません。 答えは y = Cexp(x+x^2/2) (Cは定数) らしいのですが、これはラプラス変換では難しいのでしょうか。 (s-1)Y(s)が出てくるのでexp(x)は納得できるのですが、何故xを積分したと思われる値がexp()内に出るのか分かりません。

  • ラプラス変換・微分方程式

    微分方程式、 ty'' - (1-t)y' + 2y = t-1 y(0) = 0 y'(0) = 1 について、 -----以下自分の回答------------- L[y''] = s^2 * Y(s) - 1 L[y' ] = sY(s) L[ty''] = -L[(-t)y''] = d(s^2Y(s)-1)/ds = 2sY(s) + s^2 dY(s)/ds L[ty' ] = -L[(-t)y' ] = d(sY(s))/ds = Y(s) + s dY(s)/ds よって、 2sY(s) + s^2 dY(s)/ds - Y(s) - s dY(s)/ds -sY(s) +2Y(s) = 1/s^2 - 1/s ・・・ -------------------------------- ここから先へ進めません。 というか、また、微分方程式になってしまってお手上げです。 回答には、t+(c/2)t^2 とあるのですが、 途中結果も載っておらず、このcはどっから来たんだ?状態です。 積分定数かなんかでしょうか もうひとつもラプラス変換についてです。 (sin(at))^3 のラプラス変換を求めたいのですが、 これは、定義に従って ∫(sin(at))^3 * exp(-st) dt として、部分積分で展開するしか方法が思いつきません。 そしてとてつもなく面倒くさそうです。 なにか効率のよい求め方とかはないですか?

  • ラプラス変換による回路解析

    RC直列回路を2パラでつないだ回路をラプラス変換で解析しているのですが、 次のような形の式が出てきました。(余計な係数は省略してます。)   1/(s+A) + 1/{s(s+B)}   (A,Bは定数) この式を逆変換したいのですが、第二項は分母がsでくくられているので そのまま公式に入れられませんでした。 そこで、ラプラス逆変換の定義式   f(x) = (1/2πj)∫F(s)exp(st)ds  ( s:[c+jω,c-jω]) をtで不定積分 (積分定数は0) してみると、  ∫f(x)dt = (1/2πj)∫F(s)exp(st)ds × (1/s) といった感じでうまいこと分母にsが飛び出してきてくれたので、 これを参考に、先ほどの逆変換も次のように計算してみました。  L-1[ 1/{s(s+B)} ]  =  ∫{ L-1 [1/(s+B)] }dt               =  ∫{ exp(-Bt) }dt               =  -exp(-Bt)/B 個人的にはこれで間違っていないような気はするのですが、いきなり積分定数の無い不定積分を使うのは何か気持ち悪いですし、それにこの解法で導かれる答えもどこかしっくりきません。(直感ですが。) しかし、自分では正解かどうか確かめる術が無いので、もしラプラス変換に詳しい方おりましたらご助言願いたいと思います。宜しくお願い致します。

  • ラプラス変換

    微分方程式 d^2y/dt^2+2c*dy/dt+y=u のt≧0における解を求めるもので、条件としては u(t)=1(t≧0),0(t<0) y(0)=y'(0)=0 0<c<1 をという問題を解こうをしているのですがどうしても途中で止まってしまいます。 自分では・・・ t≧0における解なのでu=1. 両辺をラプラス変換して (左辺)=s^2L[y(t)]-sy(0)-y'(0)+2c(sL[y(t)]-y(0))+L[y(t)] (右辺)=1/s なので y(t)=L^-1[1/(s^3-2cs^2+s)] というところまで行ったのですが、このラプラス逆変換の仕方がよくわかりません。 どなたかご教授お願いします。