• ベストアンサー

有限テーラー展開の0<θ<1の意味について

学校で、テーラー展開をやりその時に 関数がn回微分が可能でIの点aを固定すると各x∈Iに対して (式省略) をみたす、0<θ<1が存在する と、先生が教科書を読み上げていたのですが、これの意味が全くわかりません。 授業後に質問しに行っても、同じようなことばかり(専門用語的なのを無駄に使うので更にわからない)繰り返されました。 結局この0<θ<1はなんなのでしょうか。 すいませんがお分かりの方がいらっしゃいましたらご教示いただけないでしょうか。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.4

そのθの由来は、中間値定理です。しかし、 そう言われても、「意味」が解ったような 気持ちにはならないだろうと思います。 テイラーの定理の式形は、教科書にあるとおりに 覚える以外はないとして、θの存在が解って 何がウレシイのかと言えば… そのようなθが存在することで、 テイラー近似の剰余項(テイラーの式の最後の項) の大きさが不等式で見積もれるようになるのです。 それは、テイラー展開を有限項で打ち切った際の 誤差を表すものであり、テイラー級数の収束の 根拠にもなります。 ちなみに、剰余項を取り扱うための方法は θを使ったもの以外にも、積分を使うものなど、 いくつかやり方があります。 Wikipedia などにも、載っていますよ。

mogeraccho
質問者

お礼

ご回答ありがとうございます。 なるほど、つまりあのθはテーラー展開を途中でうち切った際の誤差を表すものだったのですね? もうちょっと調べてみます。 ありがとうございました。

その他の回答 (5)

  • hugen
  • ベストアンサー率23% (56/237)
回答No.6

m=min f '''(x) , M=max f '''(x)  トスルト,  m≦f '''(x)≦M [a,x]デ積分スルト、       m(x-a)≦f ''(x)-f ''(a)≦M(x-a) 積分ヲ繰り返すと、 1/2*m(x-a)^2≦f '(x)-f '(a)-f ''(a)(x-a)≦1/2*M(x-a)^2 1/3!*m(x-a)^3≦f (x)-f (a)-f '(a)(x-a)-1/2*f ''(a)(x-a)^2≦1/3!*M(x-a)^3 ( 1/3!*(x-a)^3 デ 割ると ) m≦{f(x)-f(a)-f '(a)(x-a)-1/2*f ''(a)(x-a)^2}/{1/3!*(x-a)^3}≦M f ''' ノ中間値ノ定理カラ {f(x)-f (a)-f '(a)(x-a)-1/2*f ''(a)(x-a)^2}/{1/3!*(x-a)^3}=f '''(ξ). ( a<ξ<x ) f(x)=f a)+f '(a)(x-a)+1/2*f ''(a)(x-a)^2+1/3!*f '''(ξ)*(x-a)^3  θ=(ξ-a)/(x-a)   ト スルト   ξ=a+θ(x-a)

回答No.5

>f(x) = Σ(k=0)(n-1) { f(k)(a)/k!*(x-a) } + f(n)(a+θ(x-a)/n!)/(x-a)^n f(x) = Σ(k=0)(n-1) { f(k)(a)/k!*(x-a)^k } + f(n)(a+θ(x-a))/n!*(x-a)^n が正しいと思いますが、右の項はラグランジュの剰余ですね。 ようするにθが表しているのは、 f の n階微分の入力の範囲が a~x の 範囲であるということです。 詳細はこの「ラグランジュの剰余」で検索してみてください。

  • hugen
  • ベストアンサー率23% (56/237)
回答No.3

a+θ(x-a)=c ト スルト  θ=(c-a)/(x-a)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

数直線上に, 実際に a, x と a+θ(x-a) (n! がついているのはなんかの間違いじゃないか?) をとってみればわかるのでは?

回答No.1

>関数がn回微分が可能でIの点aを固定すると各x∈Iに対して >(式省略) >をみたす、0<θ<1が存在する 式を省略されたら手も足も出ないです。

mogeraccho
質問者

お礼

そうなのですか…… 申し訳ないです。全くわかってないのでなくてもできると思ってました^^; 式は、 f(x) = Σ(k=0)(n-1) { f(k)(a)/k!*(x-a) } + f(n)(a+θ(x-a)/n!)/(x-a)^n 表記の仕方が分からなかったのでこう書きましたが、 Σ(k=0)(n-1)は、k=0からn-1まで f(k)(a)は関数fのk回微分で引数がa f(n)(a+θ(x-a)/n!)はn回微分で引数が(a+θ(x-a)/n!) です お願いします

関連するQ&A

専門家に質問してみよう