• ベストアンサー
  • 困ってます

三角形の線分

数学の平面図形の問題が解けなくて困っています。 これがその問題です。 △ABCにおいて、辺BC,CAの中点をそれぞれD,Eとする。ADとBEの交点をF、線分AFの中点をG、CGとBEの交点をHとする。さらにDからCGに平行な線を引き、BEとの交点をIとする。 BEが6とするとき、HE,NIを求めよ。 FEが2というのは解けたのですがそこから先がわかりません。 さらにFEはこの問題で使うのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数251
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

△AFCの重心がHなので、HE=2/3 NIはNが定義されていないので分かりません。 貴方がNをFと間違えとして、仮にFIを求めると、 合同条件(1組の辺とその両端の角がそれぞれ等しい)、辺FG=辺FD、角度GFH=角度DFI、角度FGH=角度FDI(BIとCGが平行だから)を満たしているため、△FGHと△FDI は合同。 故に、FH=FI=4/3

共感・感謝の気持ちを伝えよう!

質問者からの補足

すみません、入力してませんでした。 「DからCGに平行な線を引き、BEとの交点をNとする」 です。 ご迷惑をおかけしました。

関連するQ&A

  • 三角形の重心と線分の長さ

    三角形ABCにおいて辺BC、CAの中点をそれぞれD、Eとする。 また、ADとBEの交点をF、線分AFの中点をG、 CGとBEの交点をHとする。 更に、DからCGに平行な線をひき、BEとの交点をNとする。 BE=6のとき、FE、HE、NFを求めよ。 という問題です! 重心を使うのですがよくわかりません。 答えは、2、3分の2、3分の4の順番です! お願いします(´・ω・`)

  • 三角形の長さ

    三角形ABCにおいて角Aの外角の二等分線と辺BCとの交点をDとする。また角Bの内角の二等分線と辺CAとの交点をEとしADとBEとの交点をFとする。AB=9、BD=6、AF=3のとき、EDとAEをもとめろという問題で、AFとFDの比を出すとこまではできたんですがその先がわかりません。余弦定理を使っては解けたんですがほかのやり方をあるそうなんですがそれを教えてください。

  • 正六角形 ベクトル

    この問題を解く手順と用いる定理や公式を教えてください。 質問者は高2です。 正六角形ABCDEFにおいて、(AB)→=a→,(AF)→=b→とする。 線分ADと線分BEの交点をO、線分OCの中点をG、線分OEの中点をHとするとき、 ベクトル(BC)→,(BG)→,(CH)→,(GH)→をa→,b→を用いて表せ。

  • 三角形の性質の問題です

    三角形の性質の問題です。△ABCはAB=ACで∠C=72°である。∠Bの二等分線とACとの交点をDとする。(1)△ABCと△BCDは相似であることを示せ。 (2)AD:DCを求めよ。(3)直線BC上の点EをBC=BEとなるようにとる。ただしEはCと異なる点である。DEとABの交点をFとするとき、AF:FBをもとめよ。(1)(2)はできたのですが、(3)がわかりません。ちなみに解答は(1+√5 :1です。どなたか教えてください。よろしくお願いします。

  • 直角三角形

    図の直角三角形ABCで.斜辺ACの中点をDとし.点Dを通り辺ACに垂直な直線と辺BCとの交点をEとする. BC=8cm. CA=10cmのとき.線分BEの長さを求めえください お願いいたします! 分からず困っています

  • 2角の二等分線の長さが等しい三角形は二等辺三角形

    △ABCにおいて∠Bの二等分線と辺CAとの交点をD、∠Cの二等分線と辺ABとの交点をEとするとき、線分BDと線分CEの長さが等しければAB=ACとなる。 この証明を教えて下さい。 参考書には少し難しいけど考えてみてとだけあって解説がなかったので。 BA:BC=DA:DCなどから CD=ab/(c+a) AE=bc/(a+b) AD=bc/(c+a) BE=ca/(a+b) 後半の条件からBDとCEの交点をIとしたとき (a+b)IB=(c+a)IC BD=CE={(a+b+c)/(a+b)}IC までわかったのですがb=cをどうしても示せませんでした。 (AB=c,BC=a,CA=b)

  • 三角形ABCにおいて(数学A)

    三角形ABCがBC=6 CA=5 AB=7である 角Aの二等分線が対辺BCと交わる点をD、BからCAに引いた中線をBEとしADとBEの交点をOとする (1)OE/OBを求めよ (2)三角形ABCの面積をSとするとき三角形OBDの面積を求めよ 分からないので教えてください、答えは (1)5/14 (2)35/128S です、よろしくおねがいします。

  • 三角形と円の性質 数学A

    AB=10、BC=9、CA=8である△ABCがある。∠Aの2等分線が辺BCと交わる点をD、直線ADと△ABCの外接円とのA以外の交点をEとする。BE・CEの値をもとめよ。 上の問題がなかなか解けません。 トレミーの定理をつかうのかなともおもったのですがまちがっていたようです。 BE=CEでBE、CEのどちらかが求めることができればよいというところまでしかわかりませんでした ヒントだけでもいいのでよろしくおねがいいたします

  • 三角形の辺

    AC=9,BC=6,CA==5の△ABCにおいて、∠Aの外角の二等分線と直線BCをCの方向に延長したものとの交点をDとし、∠Bの二等分線とADとの交点をF,ACとの交点をEとする。 このとき,線分ECとCDの長さ、“AE/FD”の値を求めなさい。 という問題で (ⅰ)AB:BC=AE:EC EC=2 (ⅱ)AB:AC=BD:CD 30=4CD CD=15/2 というところまでは解けたのですが、“AE/FD”がどうしても解けません。助けてください!!

  • 平面図形の問題

    図のような△ABCがある。辺BC上に点Dを、辺CA上に点Eを、辺AB上に点Fを、BD/DC=CE/EA=AF/FB=1/2となるようにとる。さらに、線分ADと線分CFとの交点をP、線分ADと線分BEとの交点をQ、線分CFと線分BEとの交点をRとする。 △PQRと△ABCの面積比△PQR/△ABCの値を求めよ。 という問題の解き方を教えてもらえないでしょうか? 回答よろしくお願いします。